SimPowerSystems ${ }^{\text {TM }}$

Reference (Simscape ${ }^{\text {TM }}$ Components)

R2014b

MATLAB®\&SIMULINK

How to Contact MathWorks

Latest news:
www.mathworks.com

Sales and services:
www.mathworks.com/sales_and_services
User community: www.mathworks.com/matlabcentral
Technical support: www.mathworks.com/support/contact_us
Phone:
508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

SimPowerSystems ${ }^{\text {TM }}$ Reference (Simscape ${ }^{\text {TM }}$ Components)

© COPYRIGHT 2013-2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

September 2013 Online only
March $2014 \quad$ Online only

New for Version 6.0 (Release 2013b)
Revised for Version 6.1 (Release 2014a)
(Renamed from SimPowerSystems ${ }^{\text {TM }}$ Reference (Third Generation))
Revised for Version 6.2 (Release 2014b)

Blocks - Alphabetical List

Functions - Alphabetical List
2

> Abbreviations and Naming Conventions in Simscape Components Libraries

Blocks - Alphabetical List

Asynchronous Machine Measurement

Per-unit measurement from asynchronous machine

Library

Machines

Description

The Asynchronous Machine Measurement block outputs a per-unit measurement associated with a connected Asynchronous Machine Squirrel Cage or Asynchronous Machine Wound Rotor block. The input of the Asynchronous Machine Measurement block connects to the pu output port of the asynchronous machine block.

You set the Output parameter to a per-unit measurement associated with the asynchronous machine. Based on the value you select, the Asynchronous Machine Measurement block:

- Directly outputs the value of an element in the input signal vector
- Calculates the per-unit measurement by using values of elements in the input signal vector in mathematical expressions

The Asynchronous Machine Measurement block outputs a per-unit measurement from the asynchronous machine according to the output value expressions in the table. For example, when you set Output to Stator d-axis voltage, the block directly outputs the value of the pu_vds element in the input signal vector. However, when you set Output to Slip, the block calculates the slip value by subtracting the value of the pu_velocity element from 1.

Output Parameter Setting	Output Value Expression
Electrical torque	pu_torque
Rotor velocity	pu_velocity

Output Parameter Setting	Output Value Expression
Stator d-axis voltage	pu_vds
Stator q-axis voltage	pu_vqs
Stator zero-sequence voltage	pu_v0s
Stator d-axis current	pu_ids
Stator q-axis current	pu_iqs
Stator zero-sequence current	pu_i0s
Slip	1-pu_velocity
Apparent power	$\sqrt{p u_{-} P t^{2}+p u_{-} Q t^{2}}$
Real power	pu_Pt $=\left(p u _v d s^{*} p u _i d s\right)+\left(p u _v q s^{*} p u _i q s\right)$ $+2\left(p u _v 0 s^{*} p u _i 0 s\right)$
Reactive power	pu_Qt $=\left(p u _v q s^{*} p u _i d s\right)-\left(p u _v d s^{*} p u _i q s\right)$
Terminal voltage	$\sqrt{p u _v d s^{2}+p u _v q s^{2}}$
Terminal current	$\sqrt{p u _i d s^{2}+p u _i q s^{2}}$
Power factor angle (rad)	power_factor_angle $=$ atan2(pu_Qt, pu_Pt)
Power factor	cos(power_factor_angle)

Dialog Box and Parameters

Output

Per-unit measurement from asynchronous machine. The default value is Electrical torque.

Ports

The block has the following ports:
pu
Physical signal vector port associated with per-unit measurements from a connected asynchronous machine. The vector elements are:

- pu_torque
- pu_velocity
- pu_vds
- pu_vqs
- pu_v0s
- pu_ids
- pu_iqs
- pu_i0s

0
Per-unit measurement output port.

See Also

Asynchronous Machine Squirrel Cage (fundamental)
Asynchronous Machine Wound Rotor (fundamental)

Asynchronous Machine Squirrel Cage (fundamental)

Squirrel-cage-rotor asynchronous machine with fundamental parameterization

Library

Machines / Asynchronous Machine (Squirrel Cage)

Description

The Asynchronous Machine Squirrel Cage (fundamental) block models a squirrel-cagerotor asynchronous machine with parameterization using fundamental parameters. A squirrel-cage-rotor asynchronous machine is a type of induction machine. All stator connections are accessible on the block. Therefore, you can model soft-start regimes using a switch between wye and delta configurations. If you need access to the rotor windings, use the Asynchronous Machine Wound Rotor (fundamental) block instead.

Connect port ~ 1 to a three-phase circuit. To connect the stator in delta configuration, connect a Phase Permute block between ports ~ 1 and ~ 2. To connect the stator in wye configuration, connect port ~ 2 to a Grounded Neutral or a Floating Neutral block.

Electrical Defining Equations

The asynchronous machine equations are expressed with respect to a synchronous reference frame, defined by

$$
\theta_{e}(t)=\int_{0}^{t} 2 \pi f_{\text {rated }} d t
$$

where $f_{\text {rated }}$ is the value of the Rated electrical frequency parameter.

Park's transformation maps stator equations to a reference frame that is stationary with respect to the rated electrical frequency. Park's transformation is defined by

$$
P_{s}=\frac{2}{3}\left[\begin{array}{ccc}
\cos \theta_{e} & \cos \left(\theta_{e}-\frac{2 \pi}{3}\right) & \cos \left(\theta_{e}+\frac{2 \pi}{3}\right) \\
-\sin \theta_{e} & -\sin \left(\theta_{e}-\frac{2 \pi}{3}\right) & -\sin \left(\theta_{e}+\frac{2 \pi}{3}\right) \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right]
$$

where θ_{e} is the electrical angle.
Park's transformation is used to define the per-unit asynchronous machine equations. The stator voltage equations are defined by

$$
\begin{aligned}
& v_{d s}=\frac{1}{\omega_{b a s e}} \frac{d \psi_{d s}}{d t}-\omega \psi_{q s}+R_{s} i_{d s} \\
& v_{q s}=\frac{1}{\omega_{b a s e}} \frac{d \psi_{q s}}{d t}+\omega \psi_{d s}+R_{s} i_{q s}
\end{aligned}
$$

and

$$
v_{0 s}=\frac{1}{\omega_{b a s e}} \frac{d \psi_{0 s}}{d t}+R_{s} i_{0 s}
$$

where:

- $v_{d s}, v_{q s}$, and $v_{0 s}$ are the d-axis, q-axis, and zero-sequence stator voltages, defined by

$$
\left[\begin{array}{l}
v_{d s} \\
v_{q s} \\
v_{0 s}
\end{array}\right]=P_{s}\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right],
$$

where v_{a}, v_{b}, and v_{c} are the stator voltages across ports ~ 1 and ~ 2.

- $\omega_{\text {base }}$ is the per-unit base electrical speed.
- $\psi_{d s}, \psi_{q s}$, and $\psi_{0_{s}}$ are the d-axis, q-axis, and zero-sequence stator flux linkages.
- R_{s} is the stator resistance.
- $i_{d s}, i_{q s}$, and $i_{0 s}$ are the d -axis, q-axis, and zero-sequence stator currents defined by

$$
\left[\begin{array}{l}
i_{d s} \\
i_{q s} \\
i_{0 s}
\end{array}\right]=P_{s}\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right]
$$

where i_{a}, i_{b}, and i_{c} are the stator currents flowing from port ~ 1 to port ~ 2.
The rotor voltage equations are defined by

$$
v_{d r}=\frac{1}{\omega_{b a s e}} \frac{d \psi_{d r}}{d t}-\left(\omega-\omega_{r}\right) \psi_{q r}+R_{r d} i_{d r}=0
$$

and

$$
v_{q r}=\frac{1}{\omega_{\text {base }}} \frac{d \psi_{q r}}{d t}+\left(\omega-\omega_{r}\right) \psi_{d r}+R_{r d} i_{q r}=0
$$

where:

- $v_{d r}$ and $v_{q r}$ are the d-axis and q -axis rotor voltages.
- $\psi_{d r}$ and $\psi_{q r}$ are the d-axis and q -axis rotor flux linkages.
- ω is the is the per-unit synchronous speed. For a synchronous reference frame, the value is 1 .
- ω_{r} is the per-unit mechanical rotational speed.
- $R_{r d}$ is the rotor resistance referred to the stator.
- $i_{d r}$ and $i_{q r}$ are the d-axis and q -axis rotor currents.

The stator flux linkage equations are defined by

$$
\begin{aligned}
& \psi_{d s}=L_{s s} i_{d s}+L_{m} i_{d r}, \\
& \psi_{q s}=L_{s s} i_{q s}+L_{m} i_{q r},
\end{aligned}
$$

and

$$
\psi_{0 s}=L_{s s} i_{0 s}
$$

where $L_{s s}$ is the stator self-inductance and L_{m} is the magnetizing inductance.
The rotor flux linkage equations are defined by

$$
\psi_{d r}=L_{r r d} i_{d r}+L_{m} i_{d s}
$$

and

$$
\psi_{q r}=L_{r r d} i_{q r}+L_{m} i_{q s},
$$

where $L_{r r d}$ is the rotor self-inductance referred to the stator.
The rotor torque is defined by

$$
T=\psi_{d s} i_{q s}-\psi_{q s} i_{d s}
$$

The stator self-inductance L_{ss}, stator leakage inductance L_{ls}, and magnetizing inductance L_{m} are related by

$$
L_{s s}=L_{l s}+L_{m} .
$$

The rotor self-inductance $\mathrm{L}_{\mathrm{rrd}}$, rotor leakage inductance $\mathrm{L}_{\mathrm{lrd}}$, and magnetizing inductance L_{m} are related by

$$
L_{r r d}=L_{l r d}+L_{m}
$$

Plotting and Displaying Options

For an asynchronous machine block, you can perform plotting and display actions using the Power Systems menu on the block context menu.

Right-click the block. From the context menu, select one of the following from the Power Systems > Asynchronous Machine menu:

- Display Base Values displays the machine per-unit base values in the MATLAB ${ }^{\circledR}$ Command Window.
- Plot Torque Speed (SI) plots torque versus speed (both measured in SI units) in a MATLAB figure window using the current machine parameters.
- Plot Torque Speed (pu) plots torque versus speed (both measured in per unit) in a MATLAB figure window using the current machine parameters.

Dialog Box and Parameters

All default parameter values are based on a machine delta-winding configuration.

- "Main Tab" on page 1-9
- "Impedances Tab" on page 1-10
- "Initial Conditions Tab" on page 1-10

Main Tab

Rated apparent power

Rated apparent power of the asynchronous machine. The default value is 15 e 3 VA .

Rated voltage

RMS line-line voltage. The default value is 220 V .

Rated electrical frequency

Nominal electrical frequency corresponding to the rated apparent power. The default value is 60 Hz .

Number of pole pairs

Number of machine pole pairs. The default value is 1.

Impedances Tab

Stator resistance, Rs (pu)

Stator resistance. The default value is 0.0258 .

Stator leakage inductance, Lls (pu)

Stator leakage inductance. The default value is 0.0930 .

Referred rotor resistance, $\mathbf{R r}^{\prime}$ (pu)

Rotor resistance referred to the stator. The default value is 0.0145 .

Referred rotor leakage inductance, Llr' (pu)

Rotor leakage inductance referred to the stator. The default value is 0.0424 .

Magnetizing inductance, Lm (pu)

Magnetizing inductance, i.e., the peak value of stator-rotor mutual inductance. The default value is 1.7562 .

Stator zero-sequence inductance, L0 (pu)

Stator zero-sequence inductance. The default value is 0.0930 .

Initial Conditions Tab

Initial rotor angle

Initial rotor angle. The default value is 0 deg.
Initial stator d-axis magnetic flux linkage
Initial stator d-axis flux linkage. The default value is 0 pu .
Initial stator q-axis magnetic flux linkage

Initial stator q-axis flux linkage. The default value is 0 pu .

Initial stator zero-sequence magnetic flux linkage

Initial stator zero-sequence flux linkage. The default value is 0 pu .

Initial rotor d-axis magnetic flux linkage

Initial rotor d-axis flux linkage. The default value is 0 pu .

Initial rotor \mathbf{q}-axis magnetic flux linkage

Initial stator q -axis flux linkage. The default value is 0 pu .

Ports

The block has the following ports:
R
Mechanical rotational conserving port associated with the machine rotor.
C
Mechanical rotational conserving port associated with the machine case.
~ 1
Expandable "three-phase port" associated with the stator positive-end connections. ~2

Expandable "three-phase port" associated with the stator negative-end connections.
pu
Physical signal vector port associated with the machine per-unit measurements. The vector elements are:

- pu_torque
- pu_velocity
- pu_vds
- pu_vqs
- pu_v0s
- pu_ids
- pu_iqs
- pu_i0s

References

[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
[2] Lyshevski, S. E. Electromechanical Systems, Electric Machines and Applied Mechatronics. Boca Raton, FL: CRC Press, 1999.

See Also

Simscape Blocks

Asynchronous Machine Measurement | Asynchronous Machine Wound Rotor (fundamental)

Related Examples

- "Expand and Collapse Three-Phase Ports on a Block"
- Three-Phase Asynchronous Machine Starting

Asynchronous Machine Wound Rotor (fundamental)

Wound-rotor asynchronous machine with fundamental parameterization

Library

Machines / Asynchronous Machine (Wound Rotor)

Description

The Asynchronous Machine Wound Rotor (fundamental) block models a wound-rotor asynchronous machine with parameterization using fundamental parameters. A wound-rotor asynchronous machine is a type of induction machine. All stator and rotor connections are accessible on the block. Therefore, you can model soft-start regimes using a switch between wye and delta configurations or by increasing rotor resistance. If you do not need access to the rotor windings, use the Asynchronous Machine Squirrel Cage (fundamental) block instead.

Connect port ~ 1 to a three-phase circuit. To connect the stator in delta configuration, connect a Phase Permute block between ports ~ 1 and ~ 2. To connect the stator in wye configuration, connect port ~ 2 to a Grounded Neutral or a Floating Neutral block. If you do not need to vary rotor resistance, connect rotor port $\sim 1 r$ to a Floating Neutral block and rotor port $\sim 2 \mathrm{r}$ to a Grounded Neutral block.

The rotor circuit is referred to the stator. Therefore, when you use the block in a circuit, you must also refer any additional circuit parameters to the stator.

Electrical Defining Equations

The asynchronous machine equations are expressed with respect to a synchronous reference frame, defined by

$$
\theta_{e}(t)=\int_{0}^{t} 2 \pi f_{\text {rated }} d t
$$

where $f_{\text {rated }}$ is the value of the Rated electrical frequency parameter.
Park's transformation maps stator equations to a reference frame that is stationary with respect to the rated electrical frequency. Park's transformation is defined by

$$
P_{s}=\frac{2}{3}\left[\begin{array}{ccc}
\cos \theta_{e} & \cos \left(\theta_{e}-\frac{2 \pi}{3}\right) & \cos \left(\theta_{e}+\frac{2 \pi}{3}\right) \\
-\sin \theta_{e} & -\sin \left(\theta_{e}-\frac{2 \pi}{3}\right) & -\sin \left(\theta_{e}+\frac{2 \pi}{3}\right) \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right],
$$

where θ_{e} is the electrical angle.
The rotor equations are mapped to another reference frame, defined by the difference between the electrical angle and the product of rotor angle θ_{r} and number of pole pairs N :

$$
P_{r}=\frac{2}{3}\left[\begin{array}{ccc}
\cos \left(\theta_{e}-N \theta_{r}\right) & \cos \left(\theta_{e}-N \theta_{r}-\frac{2 \pi}{3}\right) & \cos \left(\theta_{e}-N \theta_{r}+\frac{2 \pi}{3}\right) \\
-\sin \left(\theta_{e}-N \theta_{r}\right) & -\sin \left(\theta_{e}-N \theta_{r}-\frac{2 \pi}{3}\right) & -\sin \left(\theta_{e}-N \theta_{r}+\frac{2 \pi}{3}\right) \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right] .
$$

Park's transformation is used to define the per-unit asynchronous machine equations. The stator voltage equations are defined by

$$
\begin{aligned}
& v_{d s}=\frac{1}{\omega_{b a s e}} \frac{d \psi_{d s}}{d t}-\omega \psi_{q s}+R_{s} i_{d s} \\
& v_{q s}=\frac{1}{\omega_{b a s e}} \frac{d \psi_{q s}}{d t}+\omega \psi_{d s}+R_{s} i_{q s}
\end{aligned}
$$

and

$$
v_{0 s}=\frac{1}{\omega_{\text {base }}} \frac{d \psi_{0 s}}{d t}+R_{s} i_{0 s}
$$

where:

- $v_{d s}, v_{q s}$, and $v_{0 s}$ are the d -axis, q -axis, and zero-sequence stator voltages, defined by

$$
\left[\begin{array}{l}
v_{d s} \\
v_{q s} \\
v_{0 s}
\end{array}\right]=P_{s}\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right],
$$

where v_{a}, v_{b}, and v_{c} are the stator voltages across ports ~ 1 and ~ 2.

- $\omega_{\text {base }}$ is the per-unit base electrical speed.
- $\psi_{d s}, \psi_{q s}$, and $\psi_{0_{s}}$ are the d-axis, q-axis, and zero-sequence stator flux linkages.
- R_{s} is the stator resistance.
- $i_{d s}, i_{q s}$, and $i_{0_{s}}$ are the d-axis, q -axis, and zero-sequence stator currents, defined by

$$
\left[\begin{array}{l}
i_{d s} \\
i_{q s} \\
i_{0 s}
\end{array}\right]=P_{s}\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right]
$$

where i_{a}, i_{b}, and i_{c} are the stator currents flowing from port ~ 1 to port ~ 2.
The rotor voltage equations are defined by

$$
\begin{aligned}
& v_{d r}=\frac{1}{\omega_{b a s e}} \frac{d \psi_{d r}}{d t}-\left(\omega-\omega_{r}\right) \psi_{q r}+R_{r d} i_{d r}, \\
& v_{q r}=\frac{1}{\omega_{b a s e}} \frac{d \psi_{q r}}{d t}+\left(\omega-\omega_{r}\right) \psi_{d r}+R_{r d} i_{q r},
\end{aligned}
$$

and

$$
v_{0 r}=\frac{1}{\omega_{\text {base }}} \frac{d \psi_{0 r}}{d t}+R_{r d} i_{0 s}
$$

where:

- $v_{d r}, v_{q r}$, and $v_{0 r}$ are the d-axis, q -axis, and zero-sequence rotor voltages, defined by

$$
\left[\begin{array}{l}
v_{d r} \\
v_{q r} \\
v_{0 r}
\end{array}\right]=P_{r}\left[\begin{array}{l}
v_{a r} \\
v_{b r} \\
v_{c r}
\end{array}\right],
$$

where $v_{a r}, v_{b r}$, and $v_{c r}$ are the rotor voltages across ports $\sim 1 \mathrm{r}$ and $\sim 2 \mathrm{r}$.

- $\psi_{d r}, \psi_{q r}$, and $\psi_{0 r}$ are the d-axis, q-axis, and zero-sequence rotor flux linkages.
- ω is the per-unit synchronous speed. For a synchronous reference frame, the value is 1.
- ω_{r} is the per-unit mechanical rotational speed.
- $R_{r d}$ is the rotor resistance referred to the stator.
- $i_{d r}, i_{q r}$, and $i_{0 r}$ are the d-axis, q -axis, and zero-sequence rotor currents, defined by

$$
\left[\begin{array}{l}
i_{d r} \\
i_{q r} \\
i_{0 r}
\end{array}\right]=P_{r}\left[\begin{array}{c}
i_{a r} \\
i_{b r} \\
i_{c r}
\end{array}\right],
$$

where $i_{a r}, i_{b r}$, and $i_{c r}$ are the rotor currents flowing from port $\sim 1 \mathrm{r}$ to port $\sim 2 \mathrm{r}$.
The stator flux linkage equations are defined by

$$
\begin{aligned}
& \psi_{d s}=L_{s s} i_{d s}+L_{m} i_{d r}, \\
& \psi_{q s}=L_{s s} i_{q s}+L_{m} i_{q r},
\end{aligned}
$$

and

$$
\psi_{0 s}=L_{s s} i_{0 s},
$$

where $L_{s s}$ is the stator self-inductance and L_{m} is the magnetizing inductance.
The rotor flux linkage equations are defined by

$$
\begin{aligned}
& \psi_{d r}=L_{r r d} i_{d r}+L_{m} i_{d s} \\
& \psi_{q r}=L_{r r d} i_{q r}+L_{m} i_{q s}
\end{aligned}
$$

and

$$
\psi_{0 r}=L_{r r d} i_{0 r}
$$

where $L_{r r d}$ is the rotor self-inductance referred to the stator.
The rotor torque is defined by

$$
T=\psi_{d s} i_{q s}-\psi_{q s} i_{d s}
$$

The stator self-inductance L_{ss}, stator leakage inductance L_{ls}, and magnetizing inductance L_{m} are related by

$$
L_{s s}=L_{l s}+L_{m}
$$

The rotor self-inductance $\mathrm{L}_{\text {rrd }}$, rotor leakage inductance $\mathrm{L}_{\mathrm{lrd}}$, and magnetizing inductance L_{m} are related by

$$
L_{r r d}=L_{l r d}+L_{m}
$$

Plotting and Displaying Options

For an asynchronous machine block, you can perform plotting and display actions using the Power Systems menu on the block context menu.

Right-click the block. From the context menu, select one of the following from the Power Systems > Asynchronous Machine menu:

- Display Base Values displays the machine per-unit base values in the MATLAB Command Window.
- Plot Torque Speed (SI) plots torque versus speed (both measured in SI units) in a MATLAB figure window using the current machine parameters.
- Plot Torque Speed (pu) plots torque versus speed (both measured in per unit) in a MATLAB figure window using the current machine parameters.

Dialog Box and Parameters

All default parameter values are based on a machine delta-winding configuration.

- "Main Tab" on page 1-18
- "Impedances Tab" on page 1-19
- "Initial Conditions Tab" on page 1-19

Main Tab

Rated apparent power

Rated apparent power of the asynchronous machine. The default value is 15 e 3 VA .

Rated voltage

RMS line-line voltage. The default value is 220 V .

Rated electrical frequency

Nominal electrical frequency corresponding to the rated apparent power. The default value is 60 Hz .

Number of pole pairs

Number of machine pole pairs. The default value is 1.

Impedances Tab

Stator resistance, Rs (pu)

Stator resistance. The default value is 0.0258 .

Stator leakage inductance, Lls (pu)

Stator leakage inductance. The default value is 0.0930 .

Referred rotor resistance, $\mathbf{R r}^{\prime}$ (pu)

Rotor resistance referred to the stator. The default value is 0.0145 .

Referred rotor leakage inductance, Llr' (pu)

Rotor leakage inductance referred to the stator. The default value is 0.0424 .

Magnetizing inductance, Lm (pu)

Magnetizing inductance, i.e., the peak value of stator-rotor mutual inductance. The default value is 1.7562 .

Stator zero-sequence inductance, L0 (pu)
Stator zero-sequence inductance. The default value is 0.0930 .

Initial Conditions Tab

Initial rotor angle

Initial rotor angle. The default value is 0 deg.

Initial stator d-axis magnetic flux linkage

Initial stator d-axis flux linkage. The default value is 0 pu .

Initial stator q-axis magnetic flux linkage

Initial stator q -axis flux linkage. The default value is 0 pu .

Initial stator zero-sequence magnetic flux linkage

Initial stator zero-sequence flux linkage. The default value is 0 pu .
Initial rotor d-axis magnetic flux linkage
Initial rotor d-axis flux linkage. The default value is 0 pu .

Initial rotor q-axis magnetic flux linkage

Initial stator q-axis flux linkage. The default value is 0 pu .

Initial rotor zero-sequence magnetic flux linkage

Initial rotor zero-sequence flux linkage. The default value is 0 pu .

Ports

The block has the following ports:
R
Mechanical rotational conserving port associated with the machine rotor.
C
Mechanical rotational conserving port associated with the machine case.
~ 1
Expandable "three-phase port" associated with the stator positive-end connections. ~2

Expandable "three-phase port" associated with the stator negative-end connections. ~1r

Expandable "three-phase port" associated with the rotor positive-end connections. ~2r

Expandable "three-phase port" associated with the rotor negative-end connections. pu

Physical signal vector port associated with the machine per-unit measurements. The vector elements are:

- pu_torque
- pu_velocity
- pu_vds
- pu_vqs
- pu_v0s
- pu_ids
- pu_iqs
- pu_i0s

References

[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
[2] Lyshevski, S. E. Electromechanical Systems, Electric Machines and Applied Mechatronics. Boca Raton, FL: CRC Press, 1999.

See Also

Simscape Blocks

Asynchronous Machine Measurement \| Asynchronous Machine Squirrel Cage (fundamental)

Related Examples

- "Expand and Collapse Three-Phase Ports on a Block"
- Three-Phase Asynchronous Machine Starting

Battery

Simple battery as finite, charge-dependent voltage source with resistance

Library

Sources

Description

The Battery block models a finite, charge-dependent voltage source with a series resistance. The voltage has a reciprocal relationship with charge defined by the equation
$V=V_{0}\left[1-\frac{\alpha(1-x)}{1-\beta(1-x)}\right]$,
where:

- x is the ratio of the charge left to the rated or full charge for the battery.
- V_{0} is the voltage when the battery is fully charged, which you specify using the Nominal Voltage, Vnom block parameter.
- α and β are curve-fitting constants. The block fits the voltage-charge equation above onto the points $(0,0)$ and (Q1, V1) on a charge-voltage graph and computes α and β accordingly. Specify Q1 and V1 in the block dialog box.

Note: This equation is an approximation of actual discharge dynamics in a real battery but is easy to parameterize as you only have to provide voltage-charge data for a single discharge point.

The block includes a self-discharge resistance across the battery terminals. By default, self-discharging is disabled, as the parameter Self-discharge resistance, R2 is set to inf.

Dialog Box and Parameters

Nominal voltage, Vnom

Voltage of the battery at full charge. The default value is 12 V .

Ampere-Hour rating

Maximum battery charge. The default value is $50 \mathrm{hr*A}$.

Initial charge

Charge on the battery at the start of the simulation. The default value is $50 \mathrm{hr*A}$.
Voltage V1< Vnom when charge is Q1

Voltage when the battery charge is at the rated value. The default value is 11.5 V . Charge Q1 when no-load volts are V1

Charge when the battery potential is V1 Volts. The default value is $25 \mathrm{hr*A}$.

Internal series resistance, R1

Internal connection resistance of the battery. The default value is 2Ω.

Self-discharge resistance, R2

Self-discharge resistance of the battery, connected between the two terminals. The default value is inf Ω (self-discharging disabled).

Ports

The block has the following ports:

Negative battery terminal
$+$
Positive battery terminal

See Also

Current Source \| Voltage Source

Brushless DC Motor

Three-winding brushless DC motor with trapezoidal flux distribution

Library

Machines / Permanent Magnet Rotor

Description

The Brushless DC Motor block models a permanent magnet synchronous machine with a three-phase wye-wound stator. The figure shows the equivalent electrical circuit for the stator windings.

This figure shows the motor construction with a single pole-pair on the rotor.

For the axes convention in the preceding figure, the a-phase and permanent magnet fluxes are aligned when rotor angle θ_{r} is zero. The block supports a second rotor axis definition in which rotor angle is defined as the angle between the a-phase magnetic axis and the rotor q axis.

The rotor magnetic field due to the permanent magnet(s) creates a trapezoidal rate of change of flux with rotor angle. The figure shows this rate of change of flux.

Back emf is the rate of change of flux, defined by

$$
\frac{d \Phi}{d t}=\frac{\partial \Phi}{\partial \theta} \frac{d \theta}{d t}=\frac{\partial \Phi}{\partial \theta} \omega
$$

where:

- Φ is the permanent magnet flux linkage.
- θ is the rotor angle.
- ω is the mechanical rotational speed.

The height h of the trapezoidal rate of change of flux profile is derived from the permanent magnet peak flux.

Integrating $\frac{\partial \Phi}{\partial \theta}$ over the range 0 to $\Pi / 2$,

$$
\Phi_{\max }=\frac{h}{2}\left(\theta_{F}+\theta_{W}\right),
$$

where:

- $\Phi_{\max }$ is the permanent magnet flux linkage.
- h is the rate of change of flux profile height.
- θ_{F} is the rotor angle range over which the back emf that the permanent magnet flux induces in the stator is constant.
- θ_{W} is the rotor angle range over which back emf increases or decreases linearly when the rotor moves at constant speed.

Rearranging the preceding equation,

$$
h=2 \Phi_{\max } /\left(\theta_{F}+\theta_{W}\right)
$$

Electrical Defining Equations

Voltages across the stator windings are defined by

$$
\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right]=\left[\begin{array}{ccc}
R_{s} & 0 & 0 \\
0 & R_{s} & 0 \\
0 & 0 & R_{s}
\end{array}\right]\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right]+\left[\begin{array}{c}
\frac{d \psi_{a}}{d t} \\
\frac{d \psi_{b}}{d t} \\
\frac{d \psi_{c}}{d t}
\end{array}\right],
$$

where:

- v_{a}, v_{b}, and v_{c} are the external voltages applied to the three motor electrical connections.
- R_{s} is the equivalent resistance of each stator winding.
- i_{a}, i_{b}, and i_{c} are the currents flowing in the stator windings.
$\frac{d \psi_{a}}{d t}, \frac{d \psi_{b}}{d t}$, and $\frac{d \psi_{c}}{d t}$ are the rates of change of magnetic flux in each stator winding.

The permanent magnet and the three windings contribute to the total flux linking each winding. The total flux is defined by

$$
\left[\begin{array}{l}
\psi_{a} \\
\psi_{b} \\
\psi_{c}
\end{array}\right]=\left[\begin{array}{lll}
L_{a a} & L_{a b} & L_{a c} \\
L_{b a} & L_{b b} & L_{b c} \\
L_{c a} & L_{c b} & L_{c c}
\end{array}\right]\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right]+\left[\begin{array}{l}
\psi_{a m} \\
\psi_{b m} \\
\psi_{c m}
\end{array}\right],
$$

where:

- ψ_{a}, ψ_{b}, and ψ_{c} are the total fluxes linking each stator winding.
- $L_{a a}, L_{b b}$, and $L_{c c}$ are the self-inductances of the stator windings.
- $L_{a b}, L_{a c}, L_{b a}$, etc. are the mutual inductances of the stator windings.
- $\psi_{a m}, \psi_{b m}$, and $\psi_{c m}$ are the permanent magnet fluxes linking the stator windings.

The inductances in the stator windings are functions of rotor angle, defined by

$$
\begin{aligned}
& L_{a a}=L_{s}+L_{m} \cos \left(2 \theta_{r}\right) \\
& L_{b b}=L_{s}+L_{m} \cos \left(2\left(\theta_{r}-2 \pi / 3\right)\right), \\
& L_{c c}=L_{s}+L_{m} \cos \left(2\left(\theta_{r}+2 \pi / 3\right)\right), \\
& L_{a b}=L_{b a}=-M_{s}-L_{m} \cos \left(2\left(\theta_{r}+\pi / 6\right)\right),
\end{aligned}
$$

$$
L_{b c}=L_{c b}=-M_{s}-L_{m} \cos \left(2\left(\theta_{r}+\pi / 6-2 \pi / 3\right)\right),
$$

and

$$
L_{c a}=L_{a c}=-M_{s}-L_{m} \cos \left(2\left(\theta_{r}+\pi / 6+2 \pi / 3\right)\right),
$$

where:

- L_{s} is the stator self-inductance per phase. This is the average self-inductance of each of the stator windings.
- L_{m} is the stator inductance fluctuation. This is the amplitude of the fluctuation in selfinductance and mutual inductance with changing rotor angle.
- M_{s} is the stator mutual inductance. This is the average mutual inductance between the stator windings.

The permanent magnet flux linking each stator winding follows the trapezoidal profile shown in the figure. The block implements the trapezoidal profile using lookup tables to calculate permanent magnet flux values.

Simplified Equations

The defining voltage and torque equations for the block are

$$
\begin{aligned}
& {\left[\begin{array}{l}
v_{d} \\
v_{q} \\
v_{0}
\end{array}\right]=P\left(\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right]-N \omega\left[\begin{array}{c}
\frac{\partial \psi_{a}}{\partial \theta_{r}} \\
\frac{\partial \psi_{b}}{\partial \theta_{r}} \\
\frac{\partial \psi_{c}}{\partial \theta_{r}}
\end{array}\right]\right),} \\
& v_{d}=R_{s} i_{d}+L_{d} \frac{d i_{d}}{d t}-N \omega i_{q} L_{q} \\
& v_{q}=R_{s} i_{q}+L_{q} \frac{d i_{q}}{d t}+N \omega i_{d} L_{d}
\end{aligned}
$$

$$
v_{0}=R_{s} i_{0}+L_{0} \frac{d i_{0}}{d t}
$$

and

$$
T=\frac{3}{2} N\left(i_{q} i_{d} L_{d}-i_{d} i_{q} L_{q}\right)+\left[\begin{array}{lll}
i_{a} & i_{b} & i_{c}
\end{array}\right]\left[\begin{array}{c}
\frac{\partial \psi_{a}}{\partial \theta_{r}} \\
\frac{\partial \psi_{b}}{\partial \theta_{r}} \\
\frac{\partial \psi_{c}}{\partial \theta_{r}}
\end{array}\right],
$$

where:

- v_{d}, v_{q}, and v_{0} are the d-axis, q-axis, and zero-sequence voltages.
- P is Park's Transformation, defined by

$$
P=2 / 3\left[\begin{array}{ccc}
\cos \theta_{e} & \cos \left(\theta_{e}-2 \pi / 3\right) & \cos \left(\theta_{e}+2 \pi / 3\right) \\
-\sin \theta_{e} & -\sin \left(\theta_{e}-2 \pi / 3\right) & -\sin \left(\theta_{e}+2 \pi / 3\right) \\
0.5 & 0.5 & 0.5
\end{array}\right] .
$$

- N is the number of rotor permanent magnet pole pairs.
- ω is the rotor mechanical rotational speed.
$\cdot \frac{\partial \psi_{a}}{\partial \theta_{r}}, \frac{\partial \psi_{b}}{\partial \theta_{r}}$, and $\frac{\partial \psi_{c}}{\partial \theta_{r}}$
are the partial derivatives of instantaneous permanent magnet flux linking each phase winding.
- i_{d}, i_{q}, and i_{0} are the d-axis, q-axis, and zero-sequence currents, defined by

$$
\left[\begin{array}{l}
i_{d} \\
i_{q} \\
i_{0}
\end{array}\right]=P\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right] .
$$

- $L_{d}=L_{s}+M_{s}+3 / 2 L_{m} . L_{d}$ is the stator d-axis inductance.
- $L_{q}=L_{s}+M_{s}-3 / 2 L_{m} . L_{q}$ is the stator q-axis inductance.
- $L_{0}=L_{s}-2 M_{s} . L_{0}$ is the stator zero-sequence inductance.
- T is the rotor torque. Torque flows from the motor case (block physical port C) to the motor rotor (block physical port R).

Dialog Box and Parameters

Main Tab

Number of pole pairs

Number of permanent magnet pole pairs on the rotor. The default value is 6 .

Maximum permanent magnet flux linkage

Peak permanent magnet flux linkage with any of the stator windings. The default value is 0.03 Wb .

Rotor angle over which back emf is constant

Rotor angle range over which the permanent magnet flux linking the stator winding is constant. This is θ_{F} in the trapezoidal rate of change of flux figure. The default value is $\mathrm{pi} / 12 \mathrm{rad}$.

Stator parameterization

Set of stator parameters that the block dialog box shows. The default value is Specify Ld, Lq and LO.

Stator d-axis inductance, Ld

D-axis inductance. This parameter is visible only if you set Stator parameterization to Specify Ld, Lq and LO. The default value is 0.00022 H .

Stator q-axis inductance, Lq

Q-axis inductance. This parameter is visible only if you set Stator parameterization to Specify Ld, Lq and LO. The default value is 0.00022 H .

Stator zero-sequence inductance, L0

Zero-sequence inductance. This parameter is visible only if you set Stator parameterization to Specify Ld, Lq and LO. The default value is 0.00016 H .

Stator self-inductance per phase, Ls

Average self-inductance of each of the three stator windings. This parameter is visible only if you set Stator parameterization to Specify Ls, Lm and Ms. The default value is 0.00002 H .

Stator inductance fluctuation, Lm

Amplitude of the fluctuation in self-inductance and mutual inductance of the stator windings with rotor angle. This parameter is visible only if you set Stator parameterization to Specify Ls, Lm and Ms. The default value is 0 H .

Stator mutual inductance, Ms

Average mutual inductance between the stator windings. This parameter is visible only if you set Stator parameterization to Specify Ls, Lm and Ms. The default value is 0.00002 H .

Stator resistance per phase, Rs

Resistance of each of the stator windings. The default value is 0.013Ω.

Initial Conditions Tab

Initial currents, [i_d i_q i_0]

Initial d-axis, q-axis, and zero-sequence currents. The default value is [0, 0, 0] A.

Rotor angle definition

Reference point for the rotor angle measurement. The default value is Angle between the a-phase magnetic axis and the d axis. This definition is shown in the motor construction figure. When you select this value, the rotor and aphase fluxes are aligned when the rotor angle is zero.

The other value you can choose for this parameter is Angle between the a-phase magnetic axis and the q axis. When you select this value, the a-phase current generates maximum torque when the rotor angle is zero.

Initial rotor angle

Initial angle of the rotor. The default value is 0 deg.

Ports

Expandable "three-phase port".
n
Electrical conserving port associated with the neutral phase.
R
Mechanical rotational conserving port associated with the motor rotor.
C
Mechanical rotational conserving port associated with the motor case.

References

[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
[2]] Anderson, P. M. Analysis of Faulted Power Systems. Hoboken, NJ: Wiley-IEEE Press, 1995.

Related Examples

- "Expand and Collapse Three-Phase Ports on a Block"

Commutation Diode

Piecewise linear diode with charge dynamics and junction capacitance

Library

Semiconductors / Fundamental Components

Description

The Commutation Diode block augments the Diode block with a model of charge dynamics. For a description of the piecewise linear diode operation that the Commutation Diode block uses, see Diode.

Use the Commutation Diode block in place of the Diode block when you want to specify precisely the charge dynamics of the device as it operates in reverse mode. For example, suppose your model uses the diode to divert inductive currents from a motor drive or inverter. In this case, precise reverse-mode operation is important and an appropriate time to use the Commutation Diode block.

The Commutation Diode uses a charge model proposed by Lauritzen and Ma [1]. The defining expressions for this charge model are:

$$
\begin{aligned}
& i=\frac{q_{E}-q_{M}}{T_{M}} \\
& \frac{d q_{M}}{d t}+\frac{q_{M}}{\tau}-\frac{q_{E}-q_{M}}{T_{M}}=0 \\
& \left.q_{E}=\left(\tau+T_{M}\right)\left(v_{D}-v_{F}(1-R G)\right) / R\right) \\
& q_{E}=\left(\tau+T_{M}\right) G v_{D}
\end{aligned} \begin{aligned}
& \text { if } v_{D}>v_{F} \leq v_{F}
\end{aligned}
$$

where:

- i is the diode current.
- q_{E} is the junction charge.
- q_{M} is the total stored charge.
- T_{M} is the transit time.
- τ is the carrier lifetime.
- v_{D} is the voltage across the diode.
- v_{F} is the diode forward voltage.
- R is the diode on resistance.
- G is the diode off conductance.

This graphic shows a typical reverse-mode current characteristic for a diode device.

where:

- $i_{R M}$ is the peak reverse current.
- i_{F} is the starting forward current when measuring $i_{R M}$.
- a is the rate of change of current when measuring $i_{R M}$.
- $t_{r r}$ is the reverse recovery time.

On the Charge Dynamics tab of the block, you specify characteristics of your diode device. The block uses these values to calculate the diode charge dynamics expressed in equations $1-1,1-2$, and $1-3$.

Data sheets for diodes quote values for peak reverse current for an initial forward current and a steady rate of change of current. The data sheet might also provide values for reverse recovery time and total recovery charge.

How the Block Calculates T_{M} and Tau

The block calculates transit time T_{M} and carrier lifetime τ based on the values you enter on the Charge Dynamics tab of the block dialog box. The block uses T_{M} and τ to solve the charge dynamics equations $1-1,1-2$, and $1-3$.

During initial current drop in reverse mode, the diode is still on, and the rate of change of current is determined by an external test circuit.

Using Equation 1-1,
$i_{F}+a t=\frac{q_{E}-q_{M}}{T_{M}}$.
Substituting Equation 1-4 into Equation 1-2,

$$
\frac{d q_{M}}{d t}+\frac{q_{M}}{\tau}=i_{F}+a t .
$$

Solving Equation 1-5 for q_{M},

$$
q_{M}=i_{F} \tau-a \tau^{2}+\frac{k}{\exp \left(\frac{t}{\tau}\right)}+a \tau t
$$

where k is a constant.

When t is zero, $i=i_{F}$ and $q_{M}=\tau i_{F}$ because the system is in steady state.
Substituting these relationships into Equation 1-6 and solving the equation gives $k=a \tau^{2}$.
Therefore,
$q_{M}=i_{F} \tau+a \tau^{2}\left(\frac{1}{\exp \left(\frac{t}{\tau}\right)}-1\right)+a \tau t$.

At time $t=t_{s}$, the current is $i_{R M}$ and the junction charge q_{E} is zero.
Substituting these values into Equation 1-1,

$$
i_{R M}=\frac{-q_{M}}{T_{M}}
$$

Rearranging Equation 1-8 to solve for q_{M} and substituting the result into Equation 1-7,
$-T_{M} i_{R M}=i_{F} \tau+a \tau^{2}\left(\frac{1}{\exp \left(\frac{t_{s}}{\tau}\right)}-1\right)+a \tau t_{s}$.
Expressing time t_{s} in terms of $i_{R M}, i_{F}$, and a,
$t_{s}=\frac{i_{R M}-i_{F}}{a}$.
Consider the diode recovery, i.e., when $t>t_{s}$. The diode is reverse biased, and current and junction charge are effectively zero.

The current is defined by

$$
i=i_{R M} \exp \left[\frac{-\left(t-t_{s}\right)}{\tau_{r r}}\right],
$$

where
$\frac{1}{\tau_{r r}}=\frac{1}{\tau}+\frac{1}{T_{M}}$.

The block now relates the expression in Equation 1-12 to the reverse recovery time $t_{r r}$.
When $t=\frac{i_{R M}}{a}+t_{r r}$, the current is $\frac{i_{R M}}{10}$.
Therefore,
$\exp \left(-\frac{t-t_{s}}{\tau_{r r}}\right)=0.1$
and
$t_{r r}=\tau_{r r} \log (10)+\frac{i_{R M}}{a}$.

The block uses equations 1-9 and 1-14 to calculate values for T_{M} and τ. The calculation uses an iterative scheme because of the exponential term in Equation 1-9.

Alternatives to Specifying $t_{r r}$ Directly

As well as allowing you to specify reverse recovery time $t_{r r}$ directly, the block supports two alternative parameterizations. The block can derive $t_{r r}$ from either of these parameters:

- Reverse recovery time stretch factor λ
- Reverse recovery charge $Q_{r r}$, when the data sheet specifies this value instead of the reverse recovery time.

The relationship between reverse recovery time stretch factor λ and $t_{r r}$ is expressed by the equation

$$
\lambda=\frac{t_{r r} a}{i_{R M}} .
$$

Reverse recovery time must be greater than $\frac{i_{R M}}{a}$ and a typical value is $3\left(\frac{i_{R M}}{a}\right)$.
Therefore, a typical value for λ is $3 . \lambda$ must be greater than 1 .
Reverse recovery charge $Q_{r r}$ is the integral over time of the reverse current from the point where the current goes negative until it decays back to zero.

The initial charge, to time t_{s} (as shown in the figure), is expressed by the equation
$Q_{s}=\frac{1}{2} \times-i_{R M} \times \frac{i_{R M}}{a}$.

Integrating Equation 1-11 gives the charge between times t_{s} and inf. This charge is equal to

$$
\tau_{r r} i_{R M}
$$

Therefore, total reverse recovery charge is given by the equation
$Q_{r r}=-\frac{i_{R M}^{2}}{2 \alpha}+\tau_{r r} i_{R M}$.

Rearranging Equation 1-16 to solve for $\tau_{r r}$ and substituting the result into Equation 1-14 gives an equation that expresses $t_{r r}$ in terms of $Q_{r r}$:

$$
t_{r r}=\left(\frac{Q_{r r}}{i_{R M}}+\frac{i_{R M}}{2 a}\right) \log (10)+\frac{i_{R M}}{a}
$$

Dialog Box and Parameters

- "Main Tab" on page 1-40
- "Charge Dynamics Tab" on page 1-41

Main Tab

Forward voltage

Minimum voltage required across the + and - block ports for the gradient of the diode i-v characteristic to be $1 / R_{\text {on }}$, where $R_{\text {on }}$ is the value of $\mathbf{O n}$ resistance. The default value is 0.8 V .

On resistance

Rate of change of voltage versus current above the forward voltage. The default value is 0.001Ω.

Off conductance

Conductance of the reverse-biased diode. The default value is $1 e-5 \Omega^{-1}$.
Number of series diodes

The number of diodes connected in series between the + and - block ports. Each diode has the forward voltage, on resistance, and off conductance that you specify in the block dialog box. The default value is 1 .

Number of parallel diodes

The number of parallel diodes, or number of parallel paths of series-connected diodes, between the + and - block ports. Each diode has the forward voltage, on resistance, and off conductance that you specify in the block dialog box. The default value is 1 .

Charge Dynamics Tab

Junction capacitance

Diode junction capacitance. The default value is 50 nF .

Peak reverse current, iRM

Peak reverse current measured by an external test circuit. This value must be less than zero. The default value is -235 A .

Initial forward current when measuring iRM

Initial forward current when measuring peak reverse current. This value must be greater than zero. The default value is 300 A .

Rate of change of current when measuring iRM

Rate of change of current when measuring peak reverse current. This value must be less than zero. The default value is $-50 \mathrm{~A} / \mu \mathrm{s}$.

Reverse recovery time parameterization

Determines how you specify reverse recovery time in the block. The default value is Specify reverse recovery time directly.

If you select Specify stretch factor or Specify reverse recovery charge, you specify a value that the block uses to derive the reverse recovery time. For more information on these options, see "Alternatives to Specifying trr Directly".

Reverse recovery time, trr

Interval between the time when the current initially goes to zero (when the diode turns off) and the time when the current falls to less than 10% of the peak reverse current. The default value is $\mathbf{1 5} \mu \mathrm{s}$.

This parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery time directly.

The value of the Reverse recovery time, trr parameter must be greater than the value of the Peak reverse current, iRM parameter divided by the value of the Rate of change of current when measuring iRM parameter.

Reverse recovery time stretch factor

Value that the block uses to calculate Reverse recovery time, trr. This value must be greater than 1 . The default value is 3 .

This parameter is visible only if you set Reverse recovery time parameterization to Specify stretch factor.

Specifying the stretch factor is an easier way to parameterize the reverse recovery time than specifying the reverse recovery charge. The larger the value for the stretch factor, the longer it takes for the reverse recovery current to dissipate.

Reverse recovery charge, Qrr

Value that the block uses to calculate Reverse recovery time, trr. Use this parameter if the data sheet for your diode device specifies a value for reverse recovery charge instead of a value for reverse recovery time.

Reverse recovery charge is the total charge that remains to dissipate when the diode turns off. The value must be less than $-\frac{i^{2}{ }_{R M}}{2 a}$,
where:

- $i_{R M}$ is the value specified for Peak reverse current, iRM.
- a is the value specified for Rate of change of current when measuring iRM.

The default value is $\mathbf{1 5 0 0} \mu \mathrm{As}$.
The parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery charge.

Ports

The block has the following ports:

```
+
```

Electrical conserving port associated with the diode positive terminal

Electrical conserving port associated with the diode negative terminal

References

[1] Lauritzen, P.O. \& C.L. Ma, "A Simple Diode Model with Reverse Recovery." IEEE ${ }^{\circledR}$ Transactions on Power Electronics. Vol. 6, No. 2, 1991, pp. 188-191.

Converter

Connect three-phase AC network to DC network

Library

Semiconductors

Description

The Converter block models a three-arm converter circuit that connects a three-phase AC network to a DC network.

Each component in the three-arm circuit is the same switching device, which you specify using an option on the Converter block dialog box. The switching devices are in the Semiconductors > Fundamental Components sublibrary.

The figure shows the equivalent circuit for the block using an Ideal Semiconductor block as the switching device.

You control the gate ports of the six switching devices via an input to the Converter block G port. To do this:

1 Use a Six-Pulse Gate Multiplexer block to multiplex all six gate signals into a single vector.
2 Connect the output of the Six-Pulse Gate Multiplexer block to the Converter block G port.

Using the Integral Diodes tab of the block dialog box, you can include an integral protection diode for each switching device. An integral diode protects the semiconductor device by providing a conduction path for reverse current. An inductive load can produce a high reverse-voltage spike when the semiconductor device suddenly switches off the voltage supply to the load.

The table shows you how to set the Integral protection diode parameter based on your goals.

Goal	Value to Select	Block Behavior
Prioritize simulation speed.	Protection diode with no dynamics	The block includes an integral copy of the Diode block. The block dialog box

Goal	Value to Select	Block Behavior
		shows parameters relating to the Diode block.
Precisely specify reverse- mode charge dynamics.	Protection diode with charge dynamics	The block includes an integral copy of the Commutation Diode block. The block dialog box shows parameters relating to the Commutation Diode block.

Using the Snubbers tab of the block dialog box, you can include a snubber circuit for each switching device, consisting of a resistor and capacitor connected in series. Typically, a snubber circuit protects a switching device against very high voltages produced by an inductive load when the device turns off the voltage supply to the load. Snubber circuits also prevent excessive rates of change of current when a switching device turns on.

Dialog Box and Parameters

2i. Block Parameters: Converter				x^{-}
Converter				
The block represents a six-pulse three-phase controlled converter consisting of three bridge arms each with two switching devices. Select between GTO, Ideal Semiconductor Switch, IGBT, MOSFET and Thyristor switching devices. Optionally you can include a freewheeling diode in parallel with each switching device. Right-click on the block and select Simscape block choices to access variant implementations of this block.				
Settings				
Switching Devices Pr	Protection Diodes	Snubbers		
Switching device:	Ideal Semiconductor Switch			\checkmark
On-state resistance:	0.001		Ohm	\checkmark
Off-state conductance: Threshold voltage, Vth:			1/Ohm	\checkmark
	: 6		v	\checkmark
		OK	Help	Apply

- "Switching Devices Tab" on page 1-47
- "Protection Diodes Tab" on page 1-50
- "Snubbers Tab" on page 1-53

Switching Devices Tab

Switching device

Converter switching device. The default value is Ideal Semiconductor Switch.
The switching devices you can select are:

- GTO
- Ideal Semiconductor Switch
- IGBT
- MOSFET
- Thyristor

GTO Parameters

When you select GTO, parameters for the GTO block appear.

Additional GTO Parameters

Forward voltage, Vf

Minimum voltage required across the anode and cathode block ports for the gradient of the device i-v characteristic to be $1 / R_{\text {on }}$, where $R_{\text {on }}$ is the value of On-state resistance. The default value is 0.8 V .

On-state resistance

Rate of change of voltage versus current above the forward voltage. The default value is 0.001Ω.

Off-state conductance

Anode-cathode conductance when the device is off. The value must be less than $1 / R$, where R is the value of $\mathbf{O n}$-state resistance. The default value is $1 e-6 \Omega^{-1}$.

Gate trigger voltage, Vgt

Gate-cathode voltage threshold. The device turns on when the gate-cathode voltage is above this value. The default value is 1 V .

Gate turn-off voltage, Vgt_off

Gate-cathode voltage threshold. The device turns off when the gate-cathode voltage is below this value. The default value is -1 V .

Holding current

Current threshold. The device stays on when the current is above this value, even when the gate-cathode voltage falls below the gate trigger voltage. The default value is 1 A .

For more information, see GTO.
Ideal Semiconductor Switch Parameters
When you select Ideal Semiconductor Switch, parameters for the Ideal Semiconductor Switch block appear.

Additional Ideal Semiconductor Switch Parameters

On-state resistance

Anode-cathode resistance when the device is on. The default value is 0.001Ω.

Off-state conductance

Anode-cathode conductance when the device is off. The value must be less than $1 / R$, where R is the value of $\mathbf{O n}$-state resistance. The default value is $1 e-6 \Omega^{-1}$.

Threshold voltage, Vth

Gate-cathode voltage threshold. The device turns on when the gate-cathode voltage is above this value. The default value is 6 V .

For more information, see Ideal Semiconductor Switch.

IGBT Parameters

When you select IGBT, parameters for the IGBT block appear.

Additional IGBT Parameters

Forward voltage, Vf

Minimum voltage required across the collector and emitter block ports for the gradient of the diode i-v characteristic to be $1 / R_{\text {on }}$, where $R_{\text {on }}$ is the value of On-state resistance. The default value is 0.8 V .

On-state resistance

Collector-emitter resistance when the device is on. The default value is 0.001Ω.

Off-state conductance

Collector-emitter conductance when the device is off. The value must be less than 1 / R, where R is the value of $\mathbf{O n}$-state resistance. The default value is $1 e-6 \Omega^{-1}$.

Threshold voltage, Vth

Collector-emitter voltage at which the device turns on. The default value is 6 V .
For more information, see IGBT.

MOSFET Parameters

When you select MOSFET, parameters for the MOSFET block appear.

Additional MOSFET Parameters

On-state resistance, R_DS(on)

Drain-source resistance when the device is on. The default value is 0.001Ω.

Off-state conductance

Drain-source conductance when the device is off. The value must be less than $1 / R$, where R is the value of $\mathbf{O n}$-state resistance. The default value is $1 e-6 \Omega^{-1}$.

Threshold voltage, Vth

Gate-source voltage threshold. The device turns on when the gate-source voltage is above this value. The default value is 6 V .

For more information, see MOSFET.

Thyristor Parameters

When you select Thyristor, parameters for the Thyristor block appear.

Additional Thyristor Parameters

Forward voltage, Vf

Forward voltage at which the device turns on. The default value is 0.8 V .

On-state resistance

Anode-cathode resistance when the device is on. The default value is 0.001Ω.

Off-state conductance

Anode-cathode conductance when the device is off. The value must be less than $1 / \mathrm{R}$, where R is the value of $\mathbf{O n}$-state resistance. The default value is 1e-6 Ω^{-1}.

Gate trigger voltage, Vgt

Gate-cathode voltage threshold. The device turns on when the gate-cathode voltage is above this value. The default value is 1 V .

Holding current

Current threshold. The device stays on when the current is above this value, even when the gate-cathode voltage falls below the gate trigger voltage. The default value is 1 A .

For more information, see Thyristor.

Protection Diodes Tab

Integral protection diode

Integral protection diode for each switching device. The default value is None.
The diodes you can select are:

- Protection diode with no dynamics
- Protection diode with charge dynamics

Parameters for Protection diode with no dynamics
When you select Protection diode with no dynamics, additional parameters appear.

Additional Parameters for Protection diode with no dynamics

Forward voltage

Minimum voltage required across the + and - block ports for the gradient of the diode i-v characteristic to be $1 / R_{\text {on }}$, where $R_{\text {on }}$ is the value of $\mathbf{O n}$ resistance. The default value is 0.8 V .

On resistance

Rate of change of voltage versus current above the forward voltage. The default value is 0.001Ω.

Off conductance

Conductance of the reverse-biased diode. The default value is $1 \mathrm{e}-5 \Omega^{-1}$.
For more information on these parameters, see Diode.

Parameters for Protection diode with charge dynamics

When you select Protection diode with charge dynamics, additional parameters appear.

Additional Parameters for Protection diode with charge dynamics

Forward voltage

Minimum voltage required across the + and - block ports for the gradient of the diode i-v characteristic to be $1 / R_{\text {on }}$, where $R_{\text {on }}$ is the value of On resistance. The default value is 0.8 V .

On resistance

Rate of change of voltage versus current above the forward voltage. The default value is 0.001Ω.

Off conductance

Conductance of the reverse-biased diode. The default value is $1 \mathrm{e}-5 \Omega^{-1}$.

Junction capacitance

Diode junction capacitance. The default value is 50 nF .

Peak reverse current, iRM

Peak reverse current measured by an external test circuit. This value must be less than zero. The default value is -235 A .

Initial forward current when measuring iRM

Initial forward current when measuring peak reverse current. This value must be greater than zero. The default value is 300 A .

Rate of change of current when measuring iRM

Rate of change of current when measuring peak reverse current. This value must be less than zero. The default value is $-50 \mathrm{~A} / \mu \mathrm{s}$.

Reverse recovery time parameterization

Determines how you specify reverse recovery time in the block. The default value is Specify reverse recovery time directly.

If you select Specify stretch factor or Specify reverse recovery charge, you specify a value that the block uses to derive the reverse recovery time. For more information on these options, see "Alternatives to Specifying trr Directly".

Reverse recovery time, trr

Interval between the time when the current initially goes to zero (when the diode turns off) and the time when the current falls to less than 10% of the peak reverse current. The default value is $\mathbf{1 5} \mu \mathrm{s}$.

This parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery time directly.

The value of the Reverse recovery time, trr parameter must be greater than the value of the Peak reverse current, iRM parameter divided by the value of the Rate of change of current when measuring iRM parameter.

Reverse recovery time stretch factor

Value that the block uses to calculate Reverse recovery time, trr. This value must be greater than 1. The default value is 3 .

This parameter is visible only if you set Reverse recovery time parameterization to Specify stretch factor.

Specifying the stretch factor is an easier way to parameterize the reverse recovery time than specifying the reverse recovery charge. The larger the value for the stretch factor, the longer it takes for the reverse recovery current to dissipate.

Reverse recovery charge, Qrr

Value that the block uses to calculate Reverse recovery time, trr. Use this parameter if the data sheet for your diode device specifies a value for reverse recovery charge instead of a value for reverse recovery time.

Reverse recovery charge is the total charge that remains to dissipate when the diode turns off. The value must be less than $-\frac{i^{2}{ }_{R M}}{2 a}$,
where:

- $i_{R M}$ is the value specified for Peak reverse current, iRM.
- a is the value specified for Rate of change of current when measuring iRM.

The default value is $\mathbf{1 5 0 0} \mu \mathrm{As}$.
The parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery charge.

For more information on these parameters, see Commutation Diode.

Snubbers Tab

Snubber

Snubber for each switching device. The default value is None.

Snubber resistance

Snubber resistance. This parameter is visible only if you set Snubber to RC snubber. The default value is 0.1Ω.

Snubber capacitance

Snubber capacitance. This parameter is visible only if you set Snubber to RC snubber. The default value is 1e-7 F.

Ports

The block has the following ports:
G
Vector input port associated with the gate terminals of the switching devices. Connect this port to a Six-Pulse Gate Multiplexer block.

Expandable "three-phase port"
$+$
Electrical conserving port associated with the DC positive terminal

Electrical conserving port associated with the DC negative terminal

See Also

Rectifier \| Six-Pulse Gate Multiplexer

Related Examples

- "Expand and Collapse Three-Phase Ports on a Block"

Current Sensor

Measure phase currents in three-phase system

Library

Sensors

Description

The Current Sensor block represents an ideal three-phase current sensor. The block measures each of the three currents flowing from port ~ 1 to port ~ 2 and outputs a single three-element, physical signal vector. Each element of the physical signal output vector is proportional to the current in its respective phase.

Dialog Box and Parameters

Current Sensor

The block represents an ideal three-phase current sensor. It measures current flowing between two three-phase electrical nodes and outputs a three-element physical signal vector.

Right-click on the block and select Simscape block choices to access variant implementations of this block.

The block has no parameters.

Ports

The block has the following ports:
~1
Expandable "three-phase port".
~2
Expandable "three-phase port".
I
Three-element physical signal vector output port associated with the phase currents.

Related Examples

- "Expand and Collapse Three-Phase Ports on a Block"

Current Source

Ideal three-phase current source

Library

Sources

Description

The Current Source block models an ideal three-phase current source that maintains sinusoidal currents of the specified magnitude through its terminals, independent of the voltage across the source.

The output current is defined by the following equations:

$$
\begin{aligned}
& I_{0}=\sqrt{2} \cdot i_{\text {phase_rms }} \\
& i_{a}=I_{0} \cdot \sin (2 \pi \cdot f \cdot t+\varphi) \\
& i_{b}=I_{0} \cdot \sin \left(2 \pi \cdot f \cdot t+\varphi-120^{\circ}\right) \\
& i_{c}=I_{0} \cdot \sin \left(2 \pi \cdot f \cdot t+\varphi+120^{\circ}\right)
\end{aligned}
$$

where:

- I_{0} is the peak phase current.
- $i_{\text {phase_rms }}$ is the RMS phase current.
- $i_{\mathrm{a}}, i_{\mathrm{b}}, i_{\mathrm{c}}$ are the respective phase currents.
- f is the frequency.
- φ is the phase shift.
- t is the time.

The arrow indicates the positive direction of the current flow. The source has a wye configuration, and port n provides a connection to the center of the wye. Port ~is an expandable "three-phase port" representing the three phases, a, b, and c.

Dialog Box and Parameters

Current (phase RMS)

RMS phase current. The default value is 100/sqrt (2), or 70.7107, A.

Phase shift

Phase shift in angular units. The default value is 0 deg .

Frequency

Current frequency, specified in Hz or units directly convertible to Hz (where Hz is defined as $1 / \mathrm{s}$). For example, kHz and MHz are valid units, but rad/s is not. The default value is 60 Hz .

Ports

The block has the following ports:

Expandable "three-phase port"
n
Electrical conserving port associated with the center of the wye

See Also

Voltage Source

Related Examples

- "Expand and Collapse Three-Phase Ports on a Block"

Circuit Breaker

Three-phase circuit breaker controlled by external signal

Library

Switches \& Breakers

Description

The Circuit Breaker block models a three-phase circuit breaker that uses an external signal and phase current information to break an electrical circuit.

The table shows how the external signal vT controls the block behavior.

Condition	Block Behavior	Resistance Parameter Used
VT < Threshold	The breaker is closed. Each phase in the composite three-phase port ~ 1 connects to the corresponding phase in the port ~ 2.	Closed Resistance
VT \geq Threshold	When the current in any phase of the composite port ~ 1 crosses zero, the phase disconnects from the corresponding phase at port ~ 2. The breaker is open.	Open Conductance

Dialog Box and Parameters

Closed resistance

Resistance between ports ~ 1 and ~ 2 when the breaker is closed. The default value is 0.001Ω.

Open conductance

Conductance between ports ~ 1 and ~ 2 when the breaker is open. The default value is 1e-6 Ω^{-1}.

Threshold

Threshold voltage for the control port vT. The block uses the threshold voltage and the value of VT at time $=0$ to determine whether the breaker is open or closed at the start of the simulation. When the voltage rises above the threshold, the breaker opens each phase as its current crosses zero. When the control port voltage falls below the threshold, the breaker closes. The default value is 0 V .

Ports

The block has the following ports:

$$
\sim 1
$$

Expandable "three-phase port"
~2
Expandable "three-phase port"
vT
Scalar control port, which is either a physical signal or an electrical port.

See Also

Single-Phase Circuit Breaker

Related Examples

- "Switch Between Physical Signal and Electrical Ports"
- "Expand and Collapse Three-Phase Ports on a Block"

Delta-Connected Load

Three-phase load wired in delta configuration

Library

Passive Devices

Description

The Delta-Connected Load block models a three-phase load wired in a delta configuration. Each limb of the load can include any combination of a resistor (R), capacitor (C), and inductor (L), connected in series or in parallel.

You can specify values for the R, L, and C components directly in terms of resistance, inductance, and capacitance, or by rated powers at a rated voltage and frequency.

- If you parameterize the block directly in terms or R, L, and C values, then for initialization you must provide a three-element row vector of initial voltages for a capacitor, and a three-element row vector of initial currents for an inductor.
- If you parameterize the block in terms of rated powers, then you must specify initial conditions in terms of an initial voltage, initial voltage phase, and initial frequency. For example, if the load is connected directly to a three-phase voltage source, then the initial conditions are identical to the source values for RMS line voltage, frequency, and phase shift. To specify zero initial voltage magnitude, set the initial voltage to 0 .

For certain combinations of R, L, and C, you must specify parasitic resistance or conductance values, which can help numerical convergence when simulating some circuit topologies. These parasitic terms ensure that an inductor has a small parallel resistive path and that a capacitor has a small series resistance. When you parameterize the block in terms of rated powers, the rated power values do not account for these small parasitic terms. The rated powers represent only the R, L, and C values of the load itself.

Dialog Box and Parameters

- "Main Tab" on page 1-64
- "Parasitics Tab" on page 1-66
- "Initial Conditions Tab" on page 1-66

Main Tab

Parameterization

Select one of these values:

- Specify by rated power - Specify values for the R, L, and C components by rated powers at a rated voltage and frequency. This is the default.
- Specify component values directly - Specify values for the R, L, and C components directly in terms of resistance, inductance, and capacitance.

Switching the Parameterization value resets the Component structure value. Select the component parameterization option first, and then the component structure. If you later switch the Parameterization value, check the Component structure value and reselect it, if necessary.

Component structure

Select the desired combination of a resistor (R), capacitor (C), and inductor (L), connected in series or in parallel. The default is R , resistor.

Rated voltage

Voltage for which load powers are specified. This parameter is visible only when you specify values by rated power. The default value is 2.4 e 4 V .

Real power

Total real power dissipated by three-phase load when supplied at the rated voltage. This parameter is visible only when you specify values by rated power and select a component structure that includes a resistor. The value must be greater than 0 . The default value is 1000 W .

Rated electrical frequency

Frequency for which reactive load powers are specified. This parameter is visible only when you specify values by rated power. The default value is 60 Hz .

Inductive reactive power

Total inductive reactive power taken by the three-phase load when supplied at the rated voltage. This parameter is visible only when you specify values by rated power and select a component structure that includes an inductor. The value must be greater than 0 . The default value is $100 \mathrm{~V} * \mathrm{~A}$.

Capacitive reactive power

Total capacitive reactive power taken by the three-phase load when supplied at the rated voltage. This parameter is visible only when you specify values by rated power and select a component structure that includes a capacitor. The value must be less than 0 . The default value is $-100 \mathrm{~V} * \mathrm{~A}$.

Resistance

The resistance of each of the load limbs. This parameter is visible only when you specify component values directly and select a component structure that includes a resistor. The default value is 1Ω.

Inductance

Inductance of each of the load limbs. This parameter is visible only when you specify component values directly and select a component structure that includes an inductor. The default value is 0.001 H .

Capacitance

Capacitance in each of the load limbs. This parameter is visible only when you specify component values directly and select a component structure that includes a capacitor. The default value is $1 \mathrm{e}-6 \mathrm{~F}$.

Parasitics Tab

Parasitic series resistance

Represents small parasitic effects. The parameter value corresponds to the series resistance value added to all instances of capacitors in the load. The default value is 1e-6 Ω.

Parasitic parallel conductance

Represents small parasitic effects. The parameter value corresponds to the parallel conductance value added across all instances of inductors in the load. The default value is $1 \mathrm{e}-6 \Omega^{-1}$.

Initial Conditions Tab

Terminal voltage magnitude

Expected initial RMS line voltage at the load. This parameter is visible only when you specify values by rated power. The default value is 2.4 e 4 V .

Terminal voltage angle

Expected initial phase of the voltage at the load. This parameter is visible only when you specify values by rated power. The default value is 0 deg.

Frequency

Expected initial frequency at the load. This parameter is visible only when you specify values by rated power. The default value is 60 Hz .

Initial inductor current [Ia Ib Ic]

Initial current in the a, b, and c phase inductors, respectively. This parameter is visible only when you specify component values directly and select a component structure that includes an inductor. The default value is $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ A.

Initial capacitor voltage [$\mathrm{Va} \mathrm{Vb} \mathrm{Vc]}$

Initial voltage across the a, b, and c phase capacitors, respectively. This parameter is visible only when you specify component values directly and select a component structure that includes a capacitor. The default value is $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right] \mathrm{V}$.

Block Parameterization

The following two tables list the block parameters for each Component structure, based on the selected Parameterization option:

- Specify by rated power
- Specify component values directly

Specify by Rated Power

Component Structure	Main Tab	Parasitics Tab	Initial Conditions Tab
R	Rated voltage Real power	None	None
L	Rated voltage Rated electrical frequency Inductive reactive power	Parasitic parallel conductance	Terminal voltage magnitude Terminal voltage angle Frequency
C	Rated voltage Rated electrical frequency Capacitive reactive power	Parasitic series resistance	Terminal voltage magnitude Terminal voltage angle Frequency
Series RL	Rated voltage Rated electrical frequency Real power Inductive reactive power	Parasitic parallel conductance	Terminal voltage magnitude Terminal voltage angle Frequency
Series RC	Rated voltage Rated electrical frequency Real power	None	Terminal voltage magnitude Terminal voltage angle Frequency

Component Structure	Main Tab	Parasitics Tab	Initial Conditions Tab
	Capacitive reactive power		
Series LC	Rated voltage Rated electrical frequency Inductive reactive power Capacitive reactive power	Parasitic parallel conductance	Terminal voltage magnitude Terminal voltage angle Frequency
Series RLC	Rated voltage Rated electrical frequency Real power Inductive reactive power Capacitive reactive power	Parasitic parallel conductance	Terminal voltage magnitude Terminal voltage angle Frequency
Parallel RL	Rated voltage Rated electrical frequency Real power Inductive reactive power	None	Terminal voltage magnitude Terminal voltage angle Frequency
Parallel RC	Rated voltage Rated electrical frequency Real power	Parasitic series resistance	Terminal voltage magnitude Terminal voltage angle

Component Structure	Main Tab	Parasitics Tab	Initial Conditions Tab
	Capacitive reactive power		Frequency
Parallel LC	Rated voltage Rated electrical frequency Inductive reactive power Capacitive reactive power	Parasitic series resistance	Terminal voltage magnitude Terminal voltage angle Frequency
Parallel RLC	Rated voltage Rated electrical frequency Real power Inductive reactive power Capacitive reactive power	Parasitic series resistance	Terminal voltage magnitude Terminal voltage angle Frequency

Specify Component Values Directly

Component Structure	Main Tab	Parasitics Tab	Initial Conditions Tab
R	Resistance	None	None
L	Inductance	Parasitic parallel conductance	Initial inductor current [Ia Ib Ic]
C	Capacitance	Parasitic series resistance	Initial capacitor voltage [Va Vb Vc]
Series RL	Resistance	Parasitic parallel conductance	Initial inductor current [Ia Ib Ic]
Series RC	Resistance	None	Initial capacitor voltage [Va Vb Vc]

Component Structure	Main Tab	Parasitics Tab	Initial Conditions Tab
	Capacitance		
Series LC	Inductance Capacitance	Parasitic parallel conductance	Initial inductor current [Ia Ib Ic] Initial capacitor voltage [Va Vb Vc]
Series RLC	Resistance Inductance Capacitance	Parasitic parallel conductance	Initial inductor current [Ia Ib Ic] Initial capacitor voltage [Va Vb Vc]
Parallel RL	Resistance Inductance	None	Initial inductor current [Ia Ib Ic]
Parallel RC	Resistance Capacitance	Parasitic series resistance	Initial capacitor voltage [Va Vb Vc]
Parallel LC	Inductance Capacitance	Parasitic series resistance	Initial inductor current [Ia Ib Ic] Initial capacitor voltage [Va Vb Vc]
Parallel RLC	Resistance Inductance Capacitance	Parasitic series resistance	Initial inductor current [Ia Ib Ic] Initial capacitor voltage [Va Vb Vc]

Ports

The block has one expandable "three-phase port", ~.

See Also

RLC | Wye-Connected Load

Related Examples

- "Expand and Collapse Three-Phase Ports on a Block"

Delta-Delta Transformer

Linear non-ideal delta-delta transformer with three-limb core

Library

Passive Devices / Transformers

Description

The Delta-Delta Transformer block models a linear non-ideal transformer with a threelimb core, in which both the primary and the secondary windings are configured in a delta connection. It includes linear winding leakage and linear core magnetization effects.

The figure shows the equivalent circuit diagram for the delta-delta transformer.

- $\mathrm{w} 1_{\mathrm{a}}$ is the primary winding connected between the a-phase and the b-phase.
- $w 1_{b}$ is the primary winding connected between the b-phase and the c-phase.
- $\mathrm{w} 1_{\mathrm{c}}$ is the primary winding connected between the c-phase and the a-phase.
- $\mathrm{w} 2_{\mathrm{a}}$ is the secondary winding connected between the a-phase and the b-phase.
- $\mathrm{w} 2_{\mathrm{b}}$ is the secondary winding connected between the b -phase and the c-phase.
- $\mathrm{w} 2_{\mathrm{c}}$ is the secondary winding connected between the c -phase and the a-phase.

Dialog Box and Parameters

- "Main Tab" on page 1-74
- "Impedances Tab" on page 1-75
- "Initial Conditions Tab" on page 1-75

Main Tab

Rated apparent power

Apparent power flowing through the transformer when operating at rated capacity. The default value is 100 e 6 VA .

Primary rated voltage

RMS line voltage applied to the primary winding under normal operating conditions. The default value is 4160 V .

Secondary rated voltage

RMS line voltage applied to the secondary winding under normal operating conditions. The default value is 24 e 3 V .

Rated electrical frequency

Rated or nominal frequency of the AC network to which the transformer is connected. The default value is 60 Hz .

Impedances Tab

Parameters in this tab are expressed in per unit (pu). For more information, see "PerUnit System of Units".

Primary leakage resistance (pu)

Power loss in the primary winding. The default value is 0.01 .

Primary leakage reactance (pu)

Magnetic flux loss in the primary winding. The default value is 0.001 .

Secondary leakage resistance (pu)

Power loss in the secondary winding. The default value is 0.01 .

Secondary leakage reactance (pu)

Magnetic flux loss in the secondary winding. The default value is 0.001 .

Shunt magnetizing resistance (pu)

Magnetic losses in transformer core. The default value is 500 .

Shunt magnetizing reactance (pu)

Magnetic effects of the transformer core when operating in its linear region. The default value is 500 .

Initial Conditions Tab

Initial primary currents

Current through the primary leakage inductors at time zero. The default value is [0 0 0] A.

Initial secondary currents

Current through the secondary leakage inductors at time zero. The default value is [0 0 0 0 A.

Initial magnetizing currents

Current through the shunt magnetization inductors at time zero. The default value is [0 0 0] A.

Initial fluxes

Magnetic fluxes in the limbs of the core at time zero. The default value is [llll $\left.\begin{array}{lll}0 & 0 & 0\end{array}\right]$ Wb .

Ports

The block has the following ports:
~ 1
Expandable "three-phase port" for primary winding
~2
Expandable "three-phase port" for secondary winding

Related Examples

- "Expand and Collapse Three-Phase Ports on a Block"

Deltal-Deltal-Wye Transformer

Linear non-ideal delta1-delta1-wye transformer with three-limb core

Library

Passive Devices / Transformers

Description

The Delta1-Delta1-Wye Transformer block models a linear non-ideal transformer with a three-limb core, in which the primary windings are configured in a delta connection, and there are delta secondary windings and wye secondary windings. The delta voltages lag the wye voltages by 30 degrees, hence the name 1 o'clock delta. It includes linear winding leakage and linear core magnetization effects.

The figure shows the equivalent circuit diagram for the delta1-delta1-wye transformer.

- $\mathrm{w} 1_{a}$ is the primary winding connected between the a-phase and the b-phase.
- $\mathrm{w} 1_{\mathrm{b}}$ is the primary winding connected between the b-phase and the c-phase.
- $w 1_{c}$ is the primary winding connected between the c-phase and the a-phase.
- $w 2_{a}$ is the delta secondary winding connected between the a-phase and the b-phase.
- $w 2_{b}$ is the delta secondary winding connected between the b-phase and the c-phase.
- $\mathrm{w} 2_{\mathrm{c}}$ is the delta secondary winding connected between the c-phase and the a-phase.
- $\mathrm{w} 3_{\mathrm{a}}$ is the wye secondary winding connected between the a-phase and the secondary neutral point.
- $\mathrm{w} 3_{\mathrm{b}}$ is the wye secondary winding connected between the b-phase and the secondary neutral point.
- $w 3_{c}$ is the wye secondary winding connected between the c-phase and the secondary neutral point.

Dialog Box and Parameters

- "Main Tab" on page 1-79
- "Impedances Tab" on page 1-80
- "Initial Conditions Tab" on page 1-81

Main Tab

Rated apparent power

Apparent power flowing through the transformer when operating at rated capacity. The default value is 100 e 6 VA .

Primary rated voltage

RMS line voltage applied to the primary winding under normal operating conditions. The default value is 4160 V .

Delta secondary rated voltage

RMS line voltage applied to the delta secondary winding under normal operating conditions. The default value is 24 e 3 V .

Wye secondary rated voltage

RMS line voltage applied to the wye secondary winding under normal operating conditions. The default value is 24 e 3 V .

Rated electrical frequency

Rated or nominal frequency of the AC network to which the transformer is connected. The default value is 60 Hz .

Impedances Tab

Parameters in this tab are expressed in per unit (pu). For more information, see "PerUnit System of Units".

Primary leakage resistance (pu)

Power loss in the primary winding. The default value is 0.01 .

Primary leakage reactance (pu)

Magnetic flux loss in the primary winding. The default value is 0.001 .

Delta secondary leakage resistance (pu)

Power loss in the delta secondary winding. The default value is 0.01 .

Delta secondary leakage reactance (pu)

Magnetic flux loss in the delta secondary winding. The default value is 0.001 .
Wye secondary leakage resistance (pu)
Power loss in the wye secondary winding. The default value is 0.01 .

Wye secondary leakage reactance (pu)

Magnetic flux loss in the wye secondary winding. The default value is 0.001 .

Shunt magnetizing resistance (pu)

Magnetic losses in transformer core. The default value is 500 .

Shunt magnetizing reactance (pu)

Magnetic effects of the transformer core when operating in its linear region. The default value is 500 .

Initial Conditions Tab

Initial primary currents

Current through the primary leakage inductors at time zero. The default value is [0 0 0] A.

Initial delta secondary currents

Current through the delta secondary leakage inductors at time zero. The default value is [0 0 0 $]$ A.

Initial wye secondary currents

Current through the wye secondary leakage inductors at time zero. The default value is [0 0 0] A.

Initial magnetizing currents

Current through the shunt magnetization inductors at time zero. The default value is [0 0 0] A.

Initial fluxes

Magnetic fluxes in the limbs of the core at time zero. The default value is [$\left.\begin{array}{lll}0 & 0 & 0\end{array}\right]$ Wb.

Ports

The block has the following ports:

Expandable "three-phase port" for primary winding
~2
Expandable "three-phase port" for delta secondary winding ~3

Expandable "three-phase port" for wye secondary winding n3

Electrical conserving port associated with the wye secondary winding neutral point

Related Examples

- "Expand and Collapse Three-Phase Ports on a Block"

Deltal 1-Deltal 1-Wye Transformer

Linear non-ideal delta11-delta11-wye transformer with three-limb core

Library

Passive Devices / Transformers

Description

The Delta11-Delta11-Wye Transformer block models a linear non-ideal transformer with a three-limb core, in which the primary windings are configured in a delta connection, there are delta secondary windings and wye secondary windings. The delta voltages lead the wye voltages by 30 degrees, hence the name 11 o'clock delta. It includes linear winding leakage and linear core magnetization effects.

The figure shows the equivalent circuit diagram for the delta11-delta11-wye transformer.

- $\mathrm{w} 1_{a}$ is the primary winding connected between the a-phase and the c-phase.
- $\mathrm{w} 1_{\mathrm{b}}$ is the primary winding connected between the b-phase and the a-phase.
- $\mathrm{w} 1_{\mathrm{c}}$ is the primary winding connected between the c-phase and the b-phase.
- $\mathrm{w} 2_{\mathrm{a}}$ is the delta secondary winding connected between the a-phase and the c-phase.
- $w 2_{b}$ is the delta secondary winding connected between the b-phase and the a-phase.
- $\mathrm{w} 2_{\mathrm{c}}$ is the delta secondary winding connected between the c-phase and the b-phase.
- $\mathrm{w} 3_{\mathrm{a}}$ is the wye secondary winding connected between the a-phase and the secondary neutral point.
- $\mathrm{w} 3_{\mathrm{b}}$ is the wye secondary winding connected between the b-phase and the secondary neutral point.
- $w 3_{c}$ is the wye secondary winding connected between the c-phase and the secondary neutral point.

Dialog Box and Parameters

- "Main Tab" on page 1-84
- "Impedances Tab" on page 1-85
- "Initial Conditions Tab" on page 1-86

Main Tab

Rated apparent power

Apparent power flowing through the transformer when operating at rated capacity. The default value is 100 e 6 VA .

Primary rated voltage

RMS line voltage applied to the primary winding under normal operating conditions. The default value is 4160 V .

Delta secondary rated voltage

RMS line voltage applied to the delta secondary winding under normal operating conditions. The default value is 24 e 3 V .

Wye secondary rated voltage

RMS line voltage applied to the wye secondary winding under normal operating conditions. The default value is 24 e 3 V .

Rated electrical frequency

Rated or nominal frequency of the AC network to which the transformer is connected. The default value is 60 Hz .

Impedances Tab

Parameters in this tab are expressed in per-unit (pu). For more information, see "PerUnit System of Units".

Primary leakage resistance (pu)

Power loss in the primary winding. The default value is 0.01 .

Primary leakage reactance (pu)

Magnetic flux loss in the primary winding. The default value is 0.001 .

Delta secondary leakage resistance (pu)

Power loss in the delta secondary winding. The default value is 0.01 .

Delta secondary leakage reactance (pu)

Magnetic flux loss in the delta secondary winding. The default value is 0.001 .
Wye secondary leakage resistance (pu)
Power loss in the wye secondary winding. The default value is 0.01 .

Wye secondary leakage reactance (pu)

Magnetic flux loss in the wye secondary winding. The default value is 0.001 .

Shunt magnetizing resistance (pu)

Magnetic losses in transformer core. The default value is 500 .

Shunt magnetizing reactance (pu)

Magnetic effects of the transformer core when operating in its linear region. The default value is 500 .

Initial Conditions Tab

Initial primary currents

Current through the primary leakage inductors at time zero. The default value is [0 0 0] A.

Initial delta secondary currents

Current through the delta secondary leakage inductors at time zero. The default value is [0000$] \mathrm{A}$.

Initial wye secondary currents

Current through the wye secondary leakage inductors at time zero. The default value is [0 0 0] A.

Initial magnetizing currents

Current through the shunt magnetization inductors at time zero. The default value is [0 0 0] A.

Initial fluxes

Magnetic fluxes in the limbs of the core at time zero. The default value is [lllll 0000$]$ Wb .

Ports

The block has the following ports:

$$
\sim 1
$$

Expandable "three-phase port" for primary winding
~2
Expandable "three-phase port" for delta secondary winding ~3

Expandable "three-phase port" for wye secondary winding n3

Electrical conserving port associated with the wye secondary winding neutral point

Related Examples

- "Expand and Collapse Three-Phase Ports on a Block"

Delta Reference

Reference point for delta-connected network

Library

Connections

Description

In a SimPowerSystems ${ }^{\text {TM }}$ Simscape ${ }^{\text {TM }}$ Components model, you must connect a Delta Reference block to any part of the three-phase system that is connected in a delta winding configuration. The block provides a reference point for the delta winding, representing the center of the line-to-line vector voltage triangle. The software calculates absolute node voltages relative to the voltage at this reference point.

For example, suppose you model a transmission system that consists of a generator connected in a wye configuration, a wye-delta transformer, a delta-wye transformer, and a load connected in wye. You must connect a Delta Reference block to the part of the circuit between the two transformers.

Dialog Box and Parameters

Block Parameters: Delta Reference
Delta Reference
Provides a reference for delta-connected networks.
Right-click on the block and select Simscape block choices to access
variant implementations of this block.

$$
\text { OK Cancel Help Apply }
$$

The block has no parameters.

Ports

The block has the following ports:

Expandable "three-phase port"

Related Examples

- "Expand and Collapse Three-Phase Ports on a Block"

Diode

Piecewise linear diode

Library

Semiconductors / Fundamental Components

Description

The Diode block models a piecewise linear diode.
If the voltage across the diode exceeds the value specified in the block Forward voltage parameter, then the diode behaves like a linear resistor plus a series voltage source. The value of the block On resistance parameter specifies the resistance of the linear resistor.

If the voltage across the diode is less than the forward voltage, then the diode behaves like a linear resistor with low conductance specified by the value of the block Off conductance parameter.

When forward biased, the series voltage source is described by the equation

$$
V=V_{f}\left(1-R_{o n} G_{o f f}\right)
$$

where:

- V is the voltage supplied by the series voltage source.
- V_{f} is the forward voltage.
- $R_{o n}$ is the on resistance.
- $G_{\text {off }}$ is the off conductance.

The $R_{\text {on }}{ }^{*} G_{\text {off }}$ term ensures that the diode current is exactly zero when the voltage across it is zero.

The figure shows a typical $i-v$ characteristic for a diode device.

Dialog Box and Parameters

Forward voltage

Minimum voltage required across the + and - block ports for the gradient of the diode $i-v$ characteristic to be $1 / R_{\text {on }}$, where $R_{\text {on }}$ is the value of $O n$ resistance. The default value is 0.8 V .

On resistance

Rate of change of voltage versus current above the forward voltage. The default value is 0.001Ω.

Off conductance

Conductance of the reverse-biased diode. The default value is $1 \mathrm{e}-5 \Omega^{-1}$.

Number of series diodes

The number of diodes connected in series between the + and - block ports. Each diode has the forward voltage, on resistance, and off conductance that you specify in the block dialog box. The default value is 1 .

Number of parallel diodes

The number of parallel diodes, or number of parallel paths of series-connected diodes, between the + and - block ports. Each diode has the forward voltage, on resistance, and off conductance that you specify in the block dialog box. The default value is 1 .

Ports

The block has the following ports:
$+$
Electrical conserving port associated with the diode positive terminal

Electrical conserving port associated with the diode negative terminal

Enabled Fault

Signal-enabled single-phase, two-phase, or three-phase grounded or ungrounded fault

Library

Passive Devices / Faults

Description

The Enabled Fault models any permutation of a single-phase, two-phase, or three-phase grounded or ungrounded fault. You specify the fault activation threshold using the block Threshold parameter. An external control signal en enables the fault. The fault is active when en is greater than the threshold. The fault is inactive when en is less than or equal to the threshold.

You can set the Enabled Fault block to represent any of these:

- Single-phase-to-ground fault (a-g, b-g or c-g)
- Two-phase fault (a-b, b-c or c-a)
- Two-phase-to-ground fault (a-b-g, b-c-g or c-a-g)
- Three-phase fault (a-b-c)
- Three-phase-to-ground fault (a-b-c-g)

The figure shows the equivalent circuit diagram for the Enabed Fault block.

You can determine the resistance in the equivalent circuit using the equations in the table.

Fault type	Value of $\boldsymbol{R}_{\mathbf{a}}$	Value of $\boldsymbol{R}_{\mathbf{b}}$	Value of $\boldsymbol{R}_{\mathbf{c}}$	Value of $\boldsymbol{R}_{\boldsymbol{g}}$
None / inactive	$\frac{1}{G_{p n}}$	$\frac{1}{G_{p n}}$	$\frac{1}{G_{p n}}$	Infinity / open circuit
a-g	$R_{p n}$	$\frac{1}{G_{p n}}$	$\frac{1}{G_{p n}}$	$R_{n g}$
b-g	$\frac{1}{G_{p n}}$	$R_{p n}$	$\frac{1}{G_{p n}}$	$R_{n g}$
c-g	$\frac{1}{G_{p n}}$	$\frac{1}{G_{p n}}$	$R_{p n}$	$R_{n g}$
a-b	$R_{p n}$	$R_{p n}$	$\frac{1}{G_{p n}}$	Infinity / open circuit
b-c	$\frac{1}{G_{p n}}$	$R_{p n}$	$R_{p n}$	Infinity / open circuit

Fault type	Value of $\boldsymbol{R}_{\boldsymbol{a}}$	Value of $\boldsymbol{R}_{\mathbf{b}}$	Value of $\boldsymbol{R}_{\boldsymbol{c}}$	Value of $\boldsymbol{R}_{\boldsymbol{g}}$
c-a	$R_{p n}$	$\frac{1}{G_{p n}}$	$R_{p n}$	Infinity / open circuit
a-b-g	$R_{p n}$	$R_{p n}$	$\frac{1}{G_{p n}}$	$R_{n g}$
b-c-g	$\frac{1}{G_{p n}}$	$R_{p n}$	$\frac{1}{G_{p n}}$	$R_{p n}$
c-a-g	$R_{p n}$	$R_{p n}$	$R_{n g}$	
a-b-c	$R_{p n}$	$R_{p n}$	$R_{p n}$	$R_{n g}$
a-b-c-g			Infinity / open circuit	

where:

- R_{a} is the resistance between the a-phase and the neutral point of a wye connection.
- R_{b} is the resistance between the b-phase and the neutral point of a wye connection.
- R_{c} is the resistance between the c-phase and the neutral point of a wye connection.
- R_{g} is the resistance between the neutral point of a wye connection and electrical reference.
- $R_{p n}$ is the value of the Faulted phase-neutral resistance parameter.
- $R_{n g}$ is the value of the Faulted neutral-ground resistance parameter.
- $G_{p n}$ is the value of the Unfaulted phase-neutral conductance parameter.

Dialog Box and Parameters

- "Main Tab" on page 1-95
- "Parasitics Tab" on page 1-96

Main Tab

Fault type

Select one of the following:

- None - Specifies that the fault is not active. This is the default value.
- Single-phase to ground (a-g)
- Single-phase to ground (b-g)
- Single-phase to ground (c-g)
- Two-phase (a-b)
- Two-phase (b-c)
- Two-phase (c-a)
- Two-phase to ground (a-b-g)
- Two-phase to ground (b-c-g)
- Two-phase to ground (c-a-g)
- Three-phase (a-b-c)
- Three-phase to ground (a-b-c-g)

Faulted phase-neutral resistance

Resistance between the phase connection and the neutral point when the fault is active. This parameter is visible if the Fault type parameter is set to anything other than None. The default value is $1 \mathrm{e}-3 \Omega$.

Faulted neutral-ground resistance

Resistance between the neutral point and the electrical reference when fault is active. This parameter is visible if the Fault type parameter is set to any fault which includes a ground connection. The default value is $1 \mathrm{e}-3 \Omega$.

Threshold

Threshold for activating the fault. If the input en is above the value for the Threshold parameter, then the fault is active. If the input en is equal to or less than the value for the Threshold parameter, then the fault is not active. This parameter is visible if the Fault type parameter is set to anything other than None. The default value is 0 .

Parasitics Tab

Unfaulted phase-neutral conductance

Conductance between the phase connections and the neutral point when a phase is not involved in the fault. The default value is $1 \mathrm{e}-6 \Omega^{-1}$.

Ports

The block has the following ports:

Expandable "three-phase port" for connecting the fault to the system en

Physical signal scalar control input port for enabling the fault

See Also

Time-Based Fault

Floating Neutral

Floating neutral point for phases of three-phase system

Library

Connections

Description

The Floating Neutral block connects the individual phases of a three-phase system to form a floating neutral point.

Note: If you want to create a neutral point that you can connect to other blocks, use the Neutral Port block. If you want to create a neutral point that is connected to ground, use the Grounded Neutral block.

Dialog Box and Parameters

Floating Neutral
Connects the a, b and c phases to create a floating neutral point.
Right-click on the block and select Simscape block choices to access
variant implementations of this block.
\qquadOK Cancel Help Apply

The block has no parameters.

Ports

The block has the following ports:

Expandable "three-phase port"

See Also

Grounded Neutral \| Neutral Port

Related Examples

- "Expand and Collapse Three-Phase Ports on a Block"

Grounded Neutral

Ground connection for phases of three-phase system

Library

Connections

Description

The Grounded Neutral block connects the phases of a three-phase system to ground.

Note: If you want to connect the neutral point of the three-phase system to other blocks, use the Neutral Port block instead. If you want to create a floating neutral point, use the Floating Neutral block.

Dialog Box and Parameters

```
M Block Parameters: Grounded Neutral E
    Grounded Neutral
    Connects the a, b and c phases to ground.
    Right-click on the block and select Simscape block choices to access
    variant implementations of this block.

The block has no parameters.

\section*{Ports}

The block has the following ports:

\section*{See Also}

Floating Neutral | Neutral Port

\section*{Related Examples}
- "Expand and Collapse Three-Phase Ports on a Block"

\section*{GTO}

Gate Turn-Off Thyristor

\section*{Library}

Semiconductors / Fundamental Components


\section*{Description}

The GTO block models a GTO (gate turn-off thyristor).
This figure shows a typical \(i\)-v characteristic for a GTO.



The GTO turns on if the gate-cathode voltage exceeds the specified gate trigger voltage. The device turns off if the gate-cathode voltage falls below the specified gate turn-off voltage value, or if the load current falls below the specified holding-current value.

In the on state, the anode-cathode path behaves like a linear diode with forward-voltage drop \(V_{f}\) and on-resistance \(R_{o n}\).

In the off state, the anode-cathode path behaves like a linear resistor with a low off-state conductance value \(G_{\text {off. }}\).

The defining Simscape equations for the block are:
```

if ((v > Vf)\&\&((G>Vgt)||(i>Ih)))\&\&(G>Vgt_off)
i == (v - Vf*(1-Ron*Goff))/Ron;
else
i == v*Goff;
end

```
where:
- \(v\) is the anode-cathode voltage.
- \(V f\) is the forward voltage.
- \(G\) is the gate voltage.
- Vgt is the gate trigger voltage.
- \(i\) is the anode-cathode current.
- Ih is the holding current.
- Vgt_off is the gate turn-off voltage.
- Ron is the on-state resistance.
- Goff is the off-state conductance.

Using the Integral Diode tab of the block dialog box, you can include an integral cathodeanode diode. A GTO that includes an integral cathode-anode diode is known as an asymmetrical GTO (A-GTO) or reverse-conducting GTO (RCGTO). An integral diode protects the semiconductor device by providing a conduction path for reverse current. An inductive load can produce a high reverse-voltage spike when the semiconductor device suddenly switches off the voltage supply to the load.

The table shows you how to set the Integral protection diode parameter based on your goals.
\begin{tabular}{|l|l|l|}
\hline Goal & Value to Select & Block Behavior \\
\hline Prioritize simulation speed. & \begin{tabular}{l} 
Protection diode with \\
no dynamics
\end{tabular} & \begin{tabular}{l} 
The block includes an \\
integral copy of the Diode \\
block. The block dialog box
\end{tabular}
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Goal & Value to Select & Block Behavior \\
\hline & & \begin{tabular}{l} 
shows parameters relating to \\
the Diode block.
\end{tabular} \\
\hline \begin{tabular}{l} 
Precisely specify reverse- \\
mode charge dynamics.
\end{tabular} & \begin{tabular}{l} 
Protection diode with \\
charge dynamics
\end{tabular} & \begin{tabular}{l} 
The block includes an \\
integral copy of the \\
Commutation Diode block. \\
The block dialog box shows \\
parameters relating to the \\
Commutation Diode block.
\end{tabular} \\
\hline
\end{tabular}

\section*{Dialog Box and Parameters}

- "Main Tab" on page 1-104
- "Integral Diode Tab" on page 1-104

\section*{Main Tab}

\section*{Forward voltage, Vf}

Minimum voltage required across the anode and cathode block ports for the gradient of the device i-v characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of \(\mathbf{O n}\)-state resistance. The default value is 0.8 V .

\section*{On-state resistance}

Rate of change of voltage versus current above the forward voltage. The default value is \(0.001 \Omega\).

\section*{Off-state conductance}

Anode-cathode conductance when the device is off. The value must be less than \(1 / R\), where \(R\) is the value of \(O\)-state resistance. The default value is \(1 e-5 \Omega^{-1}\).

\section*{Gate trigger voltage, Vgt}

Gate-cathode voltage threshold. The device turns on when the gate-cathode voltage is above this value. The default value is 1 V .

\section*{Gate turn-off voltage, Vgt_off}

Gate-cathode voltage threshold. The device turns off when the gate-cathode voltage is below this value. The default value is -1 V .

\section*{Holding current}

Current threshold. The device stays on when the current is above this value, even when the gate-cathode voltage falls below the gate trigger voltage. The default value is 1 A .

\section*{Integral Diode Tab}

\section*{Integral protection diode}

Block integral protection diode. The default value is None.
The diodes you can select are:
- Protection diode with no dynamics
- Protection diode with charge dynamics

\section*{Parameters for Protection diode with no dynamics}

When you select Protection diode with no dynamics, additional parameters appear.

\section*{Additional Parameters for Protection diode with no dynamics}

\section*{Forward voltage}

Minimum voltage required across the + and - block ports for the gradient of the diode i-v characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of \(\mathbf{O n}\) resistance. The default value is 0.8 V .

\section*{On resistance}

Rate of change of voltage versus current above the forward voltage. The default value is \(0.001 \Omega\).

\section*{Off conductance}

Conductance of the reverse-biased diode. The default value is \(1 \mathrm{e}-5 \Omega^{-1}\).
For more information on these parameters, see Diode.

\section*{Parameters for Protection diode with charge dynamics}

When you select Protection diode with charge dynamics, additional parameters appear.

\section*{Additional Parameters for Protection diode with charge dynamics}

\section*{Forward voltage}

Minimum voltage required across the + and - block ports for the gradient of the diode i-v characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of \(\mathbf{O n}\) resistance. The default value is 0.8 V .

\section*{On resistance}

Rate of change of voltage versus current above the forward voltage. The default value is \(0.001 \Omega\).

\section*{Off conductance}

Conductance of the reverse-biased diode. The default value is \(1 e-5 \Omega^{-1}\).

\section*{Junction capacitance}

Diode junction capacitance. The default value is 50 nF .

\section*{Peak reverse current, iRM}

Peak reverse current measured by an external test circuit. This value must be less than zero. The default value is -235 A .

\section*{Initial forward current when measuring iRM}

Initial forward current when measuring peak reverse current. This value must be greater than zero. The default value is 300 A .

\section*{Rate of change of current when measuring iRM}

Rate of change of current when measuring peak reverse current. This value must be less than zero. The default value is \(-50 \mathrm{~A} / \mu \mathrm{s}\).

\section*{Reverse recovery time parameterization}

Determines how you specify reverse recovery time in the block. The default value is Specify reverse recovery time directly.

If you select Specify stretch factor or Specify reverse recovery charge, you specify a value that the block uses to derive the reverse recovery time. For more information on these options, see "Alternatives to Specifying trr Directly".

\section*{Reverse recovery time, trr}

Interval between the time when the current initially goes to zero (when the diode turns off) and the time when the current falls to less than \(10 \%\) of the peak reverse current. The default value is \(\mathbf{1 5} \mu \mathrm{s}\).

This parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery time directly.

The value of the Reverse recovery time, trr parameter must be greater than the value of the Peak reverse current, iRM parameter divided by the value of the Rate of change of current when measuring iRM parameter.

\section*{Reverse recovery time stretch factor}

Value that the block uses to calculate Reverse recovery time, trr. This value must be greater than 1 . The default value is 3 .

This parameter is visible only if you set Reverse recovery time parameterization to Specify stretch factor.

Specifying the stretch factor is an easier way to parameterize the reverse recovery time than specifying the reverse recovery charge. The larger the value for the stretch factor, the longer it takes for the reverse recovery current to dissipate.

\section*{Reverse recovery charge, Qrr}

Value that the block uses to calculate Reverse recovery time, trr. Use this parameter if the data sheet for your diode device specifies a value for reverse recovery charge instead of a value for reverse recovery time.

Reverse recovery charge is the total charge that remains to dissipate when the diode turns off. The value must be less than \(-\frac{i^{2}{ }_{k M}}{2 a}\),
where:
- \(i_{R M}\) is the value specified for Peak reverse current, iRM.
- \(a\) is the value specified for Rate of change of current when measuring iRM.

The default value is \(\mathbf{1 5 0 0} \mu \mathrm{As}\).
The parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery charge.

For more information on these parameters, see Commutation Diode.

\section*{Ports}

This figure shows the block port names.


G
Port associated with the gate terminal. You can set the port to either a physical signal or electrical port.
A
Electrical conserving port associated with the anode terminal.
K
Electrical conserving port associated with the cathode terminal.

\section*{Relared Examples}
- "Switch Between Physical Signal and Electrical Ports"

\section*{Ideal Semiconductor Switch}

\author{
Ideal Semiconductor Switch
}

\section*{Library}

Semiconductors / Fundamental Components


\section*{Description}

The Ideal Semiconductor Switch block models an ideal semiconductor switching device.
The figure shows a typical \(i\)-v characteristic for an ideal semiconductor switch.


The ideal semiconductor switch is in the on state if the gate-cathode voltage exceeds the specified threshold voltage. Otherwise the device is in the off state.

In the on state, the anode-cathode path behaves like a linear resistor with on-resistance \(R_{\text {on }}\).

In the off state, the anode-cathode path behaves like a linear resistor with a low off-state conductance \(G_{\text {off }}\).

Using the Integral Diode tab of the block dialog box, you can include an integral cathode-anode diode. An integral diode protects the semiconductor device by providing a conduction path for reverse current. An inductive load can produce a high reverse-voltage spike when the semiconductor device suddenly switches off the voltage supply to the load.

The table shows you how to set the Integral protection diode parameter based on your goals.
\begin{tabular}{|l|l|l|}
\hline Goal & Value to Select & Block Behavior \\
\hline Prioritize simulation speed. & \begin{tabular}{l} 
Protection diode with \\
no dynamics
\end{tabular} & \begin{tabular}{l} 
The block includes an \\
integral copy of the Diode \\
block. The block dialog box \\
shows parameters relating to \\
the Diode block.
\end{tabular} \\
\hline \begin{tabular}{l} 
Precisely specify reverse- \\
mode charge dynamics.
\end{tabular} & \begin{tabular}{l} 
Protection diode with \\
charge dynamics
\end{tabular} & \begin{tabular}{l} 
The block includes an \\
integral copy of the \\
Commutation Diode block. \\
The block dialog box shows \\
parameters relating to the \\
Commutation Diode block.
\end{tabular} \\
\hline
\end{tabular}

\section*{Dialog Box and Parameters}

- "Main Tab" on page 1-111
- "Integral Diode Tab" on page 1-111

\section*{Main Tab}

\section*{On-state resistance}

Anode-cathode resistance when the device is on. The default value is \(0.001 \Omega\).

\section*{Off-state conductance}

Anode-cathode conductance when the device is off. The value must be less than \(1 / R\), where \(R\) is the value of \(\mathbf{O n}\)-state resistance. The default value is \(1 e-6 \Omega^{-1}\).

\section*{Threshold voltage, Vth}

Gate-cathode voltage threshold. The device turns on when the gate-cathode voltage is above this value. The default value is 0.5 V .

\section*{Integral Diode Tab}

\section*{Integral protection diode}

Specify whether the block includes an integral protection diode. The default value is None.

If you want to include an integral protection diode, there are two options:
- Protection diode with no dynamics
- Protection diode with charge dynamics

\section*{Parameters for Protection diode with no dynamics}

When you select Protection diode with no dynamics, additional parameters appear.

\section*{Additional Parameters for Protection diode with no dynamics}

Forward voltage
Minimum voltage required across the + and - block ports for the gradient of the diode i-v characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of \(\mathbf{O n}\) resistance. The default value is 0.8 V .
On resistance
Rate of change of voltage versus current above the forward voltage. The default value is \(0.001 \Omega\).

\section*{Off conductance}

Conductance of the reverse-biased diode. The default value is \(1 \mathrm{e}-5 \Omega^{-1}\).
For more information on these parameters, see Diode.
Parameters for Protection diode with charge dynamics
When you select Protection diode with charge dynamics, additional parameters appear.

\section*{Additional Parameters for Protection diode with charge dynamics}

Forward voltage

Minimum voltage required across the + and - block ports for the gradient of the diode i-v characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of \(\mathbf{O n}\) resistance. The default value is 0.8 V .

\section*{On resistance}

Rate of change of voltage versus current above the forward voltage. The default value is \(0.001 \Omega\).

\section*{Off conductance}

Conductance of the reverse-biased diode. The default value is \(1 \mathrm{e}-5 \Omega^{-1}\).

\section*{Junction capacitance}

Diode junction capacitance. The default value is 50 nF .

\section*{Peak reverse current, iRM}

Peak reverse current measured by an external test circuit. This value must be less than zero. The default value is -235 A .

\section*{Initial forward current when measuring iRM}

Initial forward current when measuring peak reverse current. This value must be greater than zero. The default value is 300 A .

\section*{Rate of change of current when measuring iRM}

Rate of change of current when measuring peak reverse current. This value must be less than zero. The default value is \(-50 \mathrm{~A} / \mu \mathrm{s}\).

\section*{Reverse recovery time parameterization}

Determines how you specify reverse recovery time in the block. The default value is Specify reverse recovery time directly.

If you select Specify stretch factor or Specify reverse recovery charge, you specify a value that the block uses to derive the reverse recovery time. For more information on these options, see "Alternatives to Specifying trr Directly".

\section*{Reverse recovery time, trr}

Interval between the time when the current initially goes to zero (when the diode turns off) and the time when the current falls to less than \(10 \%\) of the peak reverse current. The default value is \(\mathbf{1 5}\) us.

This parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery time directly.

The value of the Reverse recovery time, trr parameter must be greater than the value of the Peak reverse current, iRM parameter divided by the value of the Rate of change of current when measuring iRM parameter.

\section*{Reverse recovery time stretch factor}

Value that the block uses to calculate Reverse recovery time, trr. This value must be greater than 1 . The default value is 3 .

This parameter is visible only if you set Reverse recovery time parameterization to Specify stretch factor.

Specifying the stretch factor is an easier way to parameterize the reverse recovery time than specifying the reverse recovery charge. The larger the value for the stretch factor, the longer it takes for the reverse recovery current to dissipate.

\section*{Reverse recovery charge, Qrr}

Value that the block uses to calculate Reverse recovery time, trr. Use this parameter if the data sheet for your diode device specifies a value for reverse recovery charge instead of a value for reverse recovery time.

Reverse recovery charge is the total charge that remains to dissipate when the diode turns off. The value must be less than \(-\frac{i^{2}{ }_{k M}}{2 a}\),
where:
- \(i_{R M}\) is the value specified for Peak reverse current, iRM.
- \(a\) is the value specified for Rate of change of current when measuring iRM.

The default value is \(\mathbf{1 5 0 0} \mu \mathrm{As}\).
The parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery charge.

For more information on these parameters, see Commutation Diode.

\section*{Ports}

This figure shows the block port names.


G
Port associated with the gate terminal. You can set the port to either a physical signal or electrical port.

A
Electrical conserving port associated with the anode terminal.
K
Electrical conserving port associated with the cathode terminal.

\section*{Related Examples}
- "Switch Between Physical Signal and Electrical Ports"

\section*{IGBT}

\author{
Insulated-Gate Bipolar Transistor
}

\section*{Library}

Semiconductors / Fundamental Components


\section*{Description}

The IGBT block models an IGBT (insulated-gate bipolar transistor).
This graphic shows a typical \(i-v\) characteristic for an IGBT.



The IGBT is in the on state if the gate-emitter voltage exceeds the specified threshold voltage \(V_{t h}\). Otherwise, the device is in the off state.

In the on state, the collector-emitter path behaves like a linear diode with forwardvoltage drop \(V_{f}\) and on-resistance \(R_{o n}\).

In the off state, the collector-emitter path behaves like a linear resistor with a low offstate conductance value \(G_{\text {off }}\).

The defining Simscape equations for the block are:
```

if (v>Vf)\&\&(G>Vth)
i == (v - Vf*(1-Ron*Goff))/Ron;
else
i == v*Goff;
end

```
where:
- \(v\) is the collector-emitter voltage.
- \(V f\) is the forward voltage.
- \(G\) is the gate-emitter voltage.
- \(V t h\) is the threshold voltage.
- \(i\) is the collector-emitter current.
- Ron is the on-state resistance.
- Goff is the off-state conductance.

Using the Integral Diode tab of the block dialog box, you can include an integral emittercollector diode. An integral diode protects the semiconductor device by providing a conduction path for reverse current. An inductive load can produce a high reverse-voltage spike when the semiconductor device suddenly switches off the voltage supply to the load.

The table shows you how to set the Integral protection diode parameter based on your goals.
\begin{tabular}{|l|l|l|}
\hline Goal & Value to Select & Block Behavior \\
\hline Prioritize simulation speed. & \begin{tabular}{l} 
Protection diode with \\
no dynamics
\end{tabular} & \begin{tabular}{l} 
The block includes an \\
integral copy of the Diode \\
block. The block dialog box \\
shows parameters relating to \\
the Diode block.
\end{tabular} \\
\hline \begin{tabular}{l} 
Precisely specify reverse- \\
mode charge dynamics.
\end{tabular} & \begin{tabular}{l} 
Protection diode with \\
charge dynamics
\end{tabular} & \begin{tabular}{l} 
The block includes an \\
integral copy of the \\
Commutation Diode block. \\
The block dialog box shows
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Goal & Value to Select & Block Behavior \\
\hline & & \begin{tabular}{l} 
parameters relating to the \\
Commutation Diode block.
\end{tabular} \\
\hline
\end{tabular}

\section*{Dialog Box and Parameters}

- "Main Tab" on page 1-118
- "Integral Diode Tab" on page 1-119

\section*{Main Tab}

\section*{Forward voltage, Vf}

Minimum voltage required across the collector and emitter block ports for the gradient of the diode i-v characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of On-state resistance. The default value is 0.8 V .

\section*{On-state resistance}

Collector-emitter resistance when the device is on. The default value is \(0.001 \Omega\).

\section*{Off-state conductance}

Collector-emitter conductance when the device is off. The value must be less than 1 / \(R\), where \(R\) is the value of \(\mathbf{O n}\)-state resistance. The default value is 1e-5 \(\Omega^{-1}\).

\section*{Threshold voltage, Vth}

Collector-emitter voltage at which the device turns on. The default value is 6 V .

\section*{Integral Diode Tab}

\section*{Integral protection diode}

Block integral protection diode. The default value is None.
The diodes you can select are:
- Protection diode with no dynamics
- Protection diode with charge dynamics

\section*{Parameters for Protection diode with no dynamics}

When you select Protection diode with no dynamics, additional parameters appear.

\section*{Additional Parameters for Protection diode with no dynamics}

\section*{Forward voltage}

Minimum voltage required across the + and - block ports for the gradient of the diode i-v characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of \(\mathbf{O n}\) resistance. The default value is 0.8 V .

\section*{On resistance}

Rate of change of voltage versus current above the forward voltage. The default value is \(0.001 \Omega\).

\section*{Off conductance}

Conductance of the reverse-biased diode. The default value is \(1 e-5 \Omega^{-1}\).

For more information on these parameters, see Diode.

\section*{Parameters for Protection diode with charge dynamics}

When you select Protection diode with charge dynamics, additional parameters appear.

\section*{Additional Parameters for Protection diode with charge dynamics}

\section*{Forward voltage}

Minimum voltage required across the + and - block ports for the gradient of the diode i-v characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of \(O\) n resistance. The default value is 0.8 V .

\section*{On resistance}

Rate of change of voltage versus current above the forward voltage. The default value is \(0.001 \Omega\).

\section*{Off conductance}

Conductance of the reverse-biased diode. The default value is \(1 \mathrm{e}-5 \Omega^{-1}\).

\section*{Junction capacitance}

Diode junction capacitance. The default value is 50 nF .

\section*{Peak reverse current, iRM}

Peak reverse current measured by an external test circuit. This value must be less than zero. The default value is -235 A .

\section*{Initial forward current when measuring iRM}

Initial forward current when measuring peak reverse current. This value must be greater than zero. The default value is 300 A .

\section*{Rate of change of current when measuring iRM}

Rate of change of current when measuring peak reverse current. This value must be less than zero. The default value is \(-50 \mathrm{~A} / \mu \mathrm{s}\).

\section*{Reverse recovery time parameterization}

Determines how you specify reverse recovery time in the block. The default value is Specify reverse recovery time directly.

If you select Specify stretch factor or Specify reverse recovery charge, you specify a value that the block uses to derive the reverse recovery time. For more information on these options, see "Alternatives to Specifying trr Directly".

\section*{Reverse recovery time, trr}

Interval between the time when the current initially goes to zero (when the diode turns off) and the time when the current falls to less than \(10 \%\) of the peak reverse current. The default value is \(\mathbf{1 5} \mu \mathrm{s}\).

This parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery time directly.

The value of the Reverse recovery time, trr parameter must be greater than the value of the Peak reverse current, iRM parameter divided by the value of the Rate of change of current when measuring iRM parameter.

\section*{Reverse recovery time stretch factor}

Value that the block uses to calculate Reverse recovery time, trr. This value must be greater than 1 . The default value is 3 .

This parameter is visible only if you set Reverse recovery time parameterization to Specify stretch factor.

Specifying the stretch factor is an easier way to parameterize the reverse recovery time than specifying the reverse recovery charge. The larger the value for the stretch factor, the longer it takes for the reverse recovery current to dissipate.

\section*{Reverse recovery charge, Qrr}

Value that the block uses to calculate Reverse recovery time, trr. Use this parameter if the data sheet for your diode device specifies a value for reverse recovery charge instead of a value for reverse recovery time.

Reverse recovery charge is the total charge that remains to dissipate when the diode turns off. The value must be less than \(-\frac{i^{2}{ }_{R M}}{2 a}\),
where:
- \(i_{R M}\) is the value specified for Peak reverse current, iRM.
- \(a\) is the value specified for Rate of change of current when measuring iRM.

The default value is \(\mathbf{1 5 0 0} \mu \mathrm{As}\).

The parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery charge.

For more information on these parameters, see Commutation Diode.

\section*{Ports}

This figure shows the block port names.


G
Port associated with the gate terminal. You can set the port to either a physical signal or electrical port.
C
Electrical conserving port associated with the collector terminal.
E
Electrical conserving port associated with the emitter terminal.

\section*{Related Examples}
- "Switch Between Physical Signal and Electrical Ports"

\section*{Ideal Rectifier}

Convert three-phase AC voltage to fixed DC voltage with idealized power loss

\section*{Library}

Semiconductors

\section*{Description}


The Ideal Rectifier block models an average value, ideal, full-wave, six-pulse rectifier. It converts instantaneous three-phase AC voltages to DC voltage and DC power demand to three-phase AC power demand. The corresponding AC power demand is equal to the sum of the fixed power loss and the DC power demand.

You can use the Ideal Rectifier block only as a six-pulse rectifier. You cannot combine two Ideal Rectifier blocks to represent a twelve-pulse rectifier.

The figure shows the equivalent circuit for the rectifier as a full-wave, six-pulse rectifier. The Ideal Rectifier block does not yield the harmonics that are typically associated with the detailed representation, however, because it converts power ideally.


\section*{Electrical Defining Equations}

The voltages are defined by these equations:
\[
\begin{aligned}
& v_{r e f}=\frac{v_{a}+v_{b}+v_{c}}{3} \\
& V_{R M S}=\sqrt{\frac{\left(v_{a}-v_{b}\right)^{2}+\left(v_{b}-v_{c}\right)^{2}+\left(v_{c}-v_{a}\right)^{2}}{3}} \\
& v_{D C}=3 \frac{\sqrt{2}}{\pi} V_{R M S} \\
& v_{p}=v_{r e f}+\frac{v_{D C}}{2} \\
& v_{n}=v_{r e f}-\frac{v_{D C}}{2},
\end{aligned}
\]
where:
- \(v_{\mathrm{a}}, v_{\mathrm{b}}, v_{\mathrm{c}}\) are the respective AC phase voltages.
- \(v_{\text {ref }}\) is the DC offset on the AC side. In a balanced AC power system with no DC bias, \(v_{\mathrm{DC}}\) is 0 V .
- \(V_{\text {rms }}\) is the RMS AC line-line voltage.
- \(v_{\mathrm{DC}}\) is the voltage difference between the positive and negative terminals of the rectifier. The \(v_{D C} / V_{R M S}\) ratio for a full-wave, six-pulse rectifier is \(3 \sqrt{2} / \pi\).
- \(v_{\mathrm{p}}, v_{\mathrm{n}}\) are the voltages at the positive and negative terminals of the rectifier.

The resistance, power, and currents are defined by these equations:
\[
\begin{aligned}
& R_{\text {fixed }}=\frac{V_{\text {Rated }}^{2}}{P_{\text {fixed }}} \\
& P_{D C}=-v_{p} i_{p}-v_{n} i_{n} \\
& R_{A C}=\frac{V_{R M S}^{2}}{P_{D C}+\frac{V_{R M S}^{2}}{R_{\text {fixed }}^{2}}} \\
& {\left[\begin{array}{lll}
i_{a} & i_{b} & i_{c}
\end{array}\right]=\frac{\left[\begin{array}{lll}
v_{a} & v_{b} & v_{c}
\end{array}\right]-v_{r e f}}{R_{A C}}}
\end{aligned}
\]
where:
- \(V_{\text {Rated }}\) is the rated AC voltage that you specify on the block mask.
- \(P_{\text {fixed }}\) is the fixed power loss that you specify on the block mask.
- \(R_{\text {fixed }}\) is the fixed per-phase series resistance in an equivalent wye-connected load.
- \(i_{\mathrm{p}}, i_{\mathrm{n}}\) are the currents flowing into the positive and negative terminals of the rectifier.
- \(\quad P_{\mathrm{DC}}\) is the power output on the DC side. \(P_{\mathrm{DC}}\) has a minimum limit of 0 W .
- \(R_{\mathrm{AC}}\) is the per-phase series resistance in an equivalent wye-connected load.
- \(i_{\mathrm{a}}, i_{\mathrm{b}}, i_{\mathrm{c}}\) are the respective AC phase currents flowing into the rectifier.

\section*{Dialog Box and Parameters}


\section*{Rated AC voltage}

Rated voltage of the AC system. The default value is 4160 V .

\section*{Fixed power loss}

Minimum power drawn on the AC side at rated AC voltage. When the instantaneous \(A C\) voltage is equal to the value you specify for the Rated AC voltage, the AC power demand equals the value you specify for the Fixed power loss plus DC power demand. The default value is 1 kW .

\section*{Ports}

The block has the following ports:

Expandable "three-phase port"
\(+\)
Electrical conserving port associated with the positive terminal

Electrical conserving port associated with the negative terminal

\section*{See Also}

Rectifier | Converter

\section*{Related Examples}
- "Expand and Collapse Three-Phase Ports on a Block"

\section*{Line Voltage Sensor}

Measure line voltages in three-phase system

\section*{Library}

Sensors

\section*{Description}


The Line Voltage Sensor block represents an ideal three-phase line voltage sensor. The block measures the line-line voltages of a three-phase system and outputs a threeelement physical signal vector. Each element of the physical signal output vector is proportional to the voltage between the phases as follows:
- Element 1: \(\mathrm{V}_{\mathrm{ab}}=\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}\)
- Element 2: \(\mathrm{V}_{\mathrm{bc}}=\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{c}}\)
- Element 3: \(\mathrm{V}_{\mathrm{ca}}=\mathrm{V}_{\mathrm{c}}-\mathrm{V}_{\mathrm{a}}\)
where \(V_{a}, V_{b}\) and \(V_{c}\) are the absolute phase voltages.

\section*{Dialog Box and Parameters}
```

隹 Block Parameters: Line Voltage Sensor
Line Voltage Sensor
The block represents an ideal three-phase voltage sensor. It
measures voltage between phases of a three-phase electrical node
and outputs a three-element physical signal vector.
Right-click on the block and select Simscape block choices to access
variant implementations of this block.
OK
Cancel
Help
Apply

```

The block has no parameters.

\section*{Ports}

The block has the following ports:
\(\sim 1\)
Expandable "three-phase port"
V
Three-element physical signal vector output port associated with the voltages between the phases

\section*{See Also}

Phase Voltage Sensor

\section*{Related Examples}
- "Expand and Collapse Three-Phase Ports on a Block"

\section*{Machine Inertia}

Machine inertia

\section*{Library}

Machines

\section*{Description}

The Machine Inertia block models inertia and damping that you connect to the mechanical rotational \(R\) port of a three-phase machine. The block has an internal connection to a mechanical rotational reference. The figure shows an equivalent configuration to the Machine Inertia block using Simscape mechanical rotational components.


Based on the value you select for the Specify inertia parameterization by parameter, you specify inertia J directly or using the machine inertia constant H .

If you specify the inertia constant, the block calculates inertia by
\[
J=\frac{2 H S_{\text {rated }}}{\left(2 \pi F_{\text {rated }} / N\right)^{2}},
\]
where:
- \(J\) is inertia in \(\mathrm{kg} \# \mathrm{~m}^{2}\).
- \(H\) is the inertia constant in sW/VA.
- \(S_{\text {rated }}\) is the machine rated apparent power in VA.
- \(F_{\text {rated }}\) is the machine rated electrical frequency in Hz .
- \(N\) is the number of machine pole pairs.

You specify damping that represents viscous friction between the machine rotor and mechanical rotational reference. Based on the value you select for the Specify damper parameterization by parameter, you specify a damping coefficient in SI units or in per unit. If you specify the damping coefficient in per unit, the block calculates the damping coefficient in SI units by
\[
\begin{aligned}
& \omega_{\text {base }}=\frac{2 \pi F_{\text {rated }}}{N} \\
& T_{\text {base }}=\frac{S_{\text {rated }}}{\omega_{\text {base }}} \\
& D_{\text {base }}=\frac{T_{\text {base }}}{\omega_{\text {base }}}
\end{aligned}
\]
and
\[
D=D_{p u} D_{b a s e}
\]
where:
- \(\omega_{\text {base }}\) is the base mechanical speed in rad/s.
- \(T_{\text {base }}\) is the base damping torque in Nm.
- \(D_{\text {base }}\) is the base damping coefficient in \(\mathrm{Nm} /(\mathrm{rad} / \mathrm{s})\).
- \(D_{p u}\) is the damping coefficient in per unit.
- \(D\) is the damping coefficient in SI units of \(\mathrm{Nm} /(\mathrm{rad} / \mathrm{s})\).

\section*{Parameter Display Option}

You can display the inertia parameter and per-unit base values using the Power Systems menu on the block context menu.

Right-click the block. From the context menu, select Display Parameters on the Power Systems > Machine Inertia menu.

The block displays parameter values in the MATLAB Command Window.

\section*{Dialog Box and Parameters}

- "Main Tab" on page 1-133
- "Inertia Tab" on page 1-133
- "Initial Conditions Tab" on page 1-134

\section*{Main Tab}

\section*{Rated apparent power}

Machine rated apparent power. The default value is 555 e 6 VA.

\section*{Rated electrical frequency}

Nominal electrical frequency corresponding to the machine rated apparent power. The default value is 60 Hz .

\section*{Number of pole pairs}

Number of machine pole pairs. The default value is 1.

\section*{Inertia Tab}

\section*{Specify inertia parameterization by}

Inertia specification. The default value is Inertia constant, \(H\).

\section*{Inertia constant, H}

Inertia constant. This parameter is visible only if you set Specify inertia parameterization by to Inertia constant, H. The default value is \(3.525 \mathrm{sW} /\) VA.

\section*{Actual inertia, J}

Inertia. This parameter is visible only if you set Specify inertia parameterization by to Actual inertia, J. The default value is \(27548 \mathrm{~kg} \# \mathrm{~m}^{2}\).

\section*{Specify damper parameterization by}

Damping specification. The default value is Per-unit damping coefficient, pu_D.

\section*{Per-unit damping coefficient}

Damping coefficient in per unit. This parameter is visible only if you set Specify damper parameterization by to Per-unit damping coefficient, pu_D. The default value is 0.01 .

\section*{SI damping coefficient}

Damping coefficient in SI units. This parameter is visible only if you set Specify damper parameterization by to SI damping coefficient, D. The default value is \(39.0509 \mathrm{Nm} /(\mathrm{rad} / \mathrm{s})\).

\section*{Initial Conditions Tab}

\section*{Specify initialization by}

Frequency initialization. The default value is Initial electrical frequency.

\section*{Initial electrical frequency}

Initial electrical frequency. This parameter is visible only if you set Specify initialization by to Initial electrical frequency. The default value is 60 Hz .

\section*{Initial mechanical frequency}

Initial mechanical frequency. This parameter is visible only if you set Specify initialization by to Initial mechanical frequency. The default value is 60 Hz .

\section*{Ports}

The block has the following ports:
R
Mechanical rotational conserving port associated with the machine rotor

\section*{References}
[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.

\section*{Machine Mechanical Power (pu)}

Machine mechanical power defined in the per-unit system

\section*{Library}

Machines

\section*{Description}


The Machine Mechanical Power (pu) block supplies specified power to, or draws specified power from, the machine that it connects to. It includes a representation of machine inertia and a mechanical rotational reference. In generator mode, the physical signal input pu defines the per-unit mechanical power that is input to the machine. In motor mode, it defines the mechanical power output from the machine. The pu input must always be positive.

The figure shows an equivalent configuration to the Machine Mechanical Power (pu) block using Simscape mechanical rotational components.


\section*{Electrical Defining Equations}

To calculate the torque that it applies to the inertia, the block divides the power demand by the present speed. Specify the Peak torque to rated torque ratio parameter to set the peak torque limit. Use the Specify inertia parameterization by parameter to specify inertia, \(J\), directly or indirectly, with the machine's inertia constant, \(H\).

If you specify the machine's inertia constant, the block calculates inertia as
\[
J=\frac{2 H S_{\text {rated }}}{\left(2 \pi F_{\text {rated }} / N\right)^{2}},
\]
where:
- \(J\) is inertia in \(\mathrm{kg} \# \mathrm{~m}^{2}\).
- \(H\) is the inertia constant in sW/VA.
- \(S_{\text {rated }}\) is the rated apparent power of the connected machine in VA.
- \(F_{\text {rated }}\) is the rated electrical frequency of the connected machine in Hz .
- \(N\) is the number of machine pole pairs.

Damping represents viscous friction between the machine rotor and mechanical rotational reference. Based on the value you select for the Specify damper parameterization by parameter, you specify a damping coefficient in per-unit or in SI units. If you specify the damping coefficient in per-unit, the block calculates the damping coefficient in SI units using these equations:
\[
\begin{aligned}
& \omega_{\text {base }}=\frac{2 \pi F_{\text {rated }}}{N}, \\
& T_{\text {base }}=\frac{S_{\text {rated }}}{\omega_{\text {base }}} \\
& D_{\text {base }}=\frac{T_{\text {base }}}{\omega_{\text {base }}}
\end{aligned}
\]
and
\[
D=D_{p u} D_{\text {base }}
\]
where:
- \(\omega_{\text {base }}\) is the base mechanical speed in rad/s.
- \(T_{\text {base }}\) is the base damping torque in Nm .
- \(D_{\text {base }}\) is the base damping coefficient in \(\mathrm{Nm} /(\mathrm{rad} / \mathrm{s})\).
- \(D_{p u}\) is the damping coefficient in per unit.
- \(D\) is the damping coefficient in SI units of \(\mathrm{Nm} /(\mathrm{rad} / \mathrm{s})\).

\section*{Dialog Box and Parameters}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{\% Block Parameters: Machine Mechanical Power (pu)} & \(x\) \\
\hline \multicolumn{9}{|l|}{Machine Mechanical Power (pu)} \\
\hline \multicolumn{9}{|l|}{This block supplies specified power to, or draws specified power from, the machine it is connected to. It includes representation of machine inertia, and a mechanical rotational reference. In generator mode the physical signal input pu defines the per unit mechanical power input to the machine, and in motor mode it defines the per unit mechanical power output from the machine. The pu input must always be positive.} \\
\hline \multicolumn{9}{|l|}{Ports R and C should be connected to the R and C ports of the machine.} \\
\hline \multicolumn{9}{|l|}{The machine inertia can be entered directly or calculated using the machine inertia constant, \(\mathrm{H}(\mathrm{W} . \mathrm{s} / \mathrm{VA})\). The machine inertia constant is defined as follows:} \\
\hline \multicolumn{9}{|l|}{FRatedMechanical = FRatedElectrical / nPolePairs;} \\
\hline \multicolumn{9}{|l|}{\(\mathrm{H}=(\) stored energy at rated speed in MW.s)/(MVA rating)} \\
\hline \multicolumn{9}{|l|}{Typical values of H (combined inertia of generator and turbine):} \\
\hline \multicolumn{9}{|l|}{Steam, 60 Hz , 1 pole pair: \(2.5-6.0\)} \\
\hline \multicolumn{9}{|l|}{Steam, 60 Hz , 2 pole pairs: \(4.0-10.0\)} \\
\hline \multicolumn{9}{|l|}{Hydro-electric: \(2.0-4.0\)} \\
\hline \multicolumn{9}{|l|}{Rotational damping can be specified using either SI or per-unit. Damping is applied between the machine inertia and the mechanical rotational reference.} \\
\hline \multicolumn{9}{|l|}{Settings} \\
\hline Main & Inertia & Initial Cond & & & & & & \\
\hline \multicolumn{3}{|l|}{Input power sign convention:} & Generator & & & & \(\checkmark\) & \\
\hline \multicolumn{3}{|l|}{Rated apparent power:} & 555e6 & & & V*A & \(\checkmark\) & \\
\hline \multicolumn{3}{|l|}{Rated electrical frequency:} & 60 & & & Hz & \(\checkmark\) & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Number of pole pairs: \\
Peak torque to rated torque ratio:
\end{tabular}}} & \multicolumn{6}{|l|}{1} \\
\hline & & & \multicolumn{6}{|l|}{2} \\
\hline & & & & OK & Cancel & & Apply & \\
\hline
\end{tabular}
- "Main Tab" on page 1-139
- "Inertia Tab" on page 1-139
- "Initial Conditions Tab" on page 1-140

\section*{Main Tab}

\section*{Input power sign convention}

Machine type specification. The choices are Generator and Motor. The default value is Generator.

\section*{Rated apparent power}

Rated apparent power of the connected machine. The default value is 555 e 6 VA .

\section*{Rated electrical frequency}

Nominal electrical frequency corresponding to the rated apparent power of the connected machine. The default value is 60 Hz .

\section*{Number of pole pairs}

Number of pole pairs of the connected machine. The default value is 1.

\section*{Peak torque to rated torque ratio}

Ratio that the block multiplies by the base torque to provide the upper limit for the torque that accelerates the inertia. The default value is 2 .

\section*{Inertia Tab}

\section*{Specify inertia parameterization by}

Inertia specification. The choices are between Actual Inertia, J and Inertia constant, H . The default value is Inertia constant, H .

\section*{Inertia constant, H}

Inertia constant. This parameter is visible only if you set Specify inertia parameterization by to Inertia constant, H. The default value is \(3.525 \mathrm{sW} /\) VA.

\section*{Actual inertia, J}

Inertia. This parameter is visible only if you set Specify inertia parameterization by to Actual Inertia, J. The default value is \(27548 \mathrm{~kg} \# \mathrm{~m}^{2}\).

\section*{Specify damper parameterization by}

Damping specification. The choices are Per-unit damping coefficient, pu_D and SI damping coefficient, D. The default value is Per-unit damping coefficient, pu_D.

\section*{Per-unit damping coefficient}

Damping coefficient in per unit. This parameter is visible only if you set Specify damper parameterization by to Per-unit damping coefficient, pu_D. The default value is 0.01 .

\section*{SI damping coefficient}

Damping coefficient in SI units. This parameter is visible only if you set Specify damper parameterization by to SI damping coefficient, D. The default value is \(39.0509 \mathrm{Nm} /(\mathrm{rad} / \mathrm{s})\).

\section*{Initial Conditions Tab}

\section*{Specify initialization by}

Frequency initialization. The choices are Initial electrical frequency and Initial mechanical frequency. The default value is Initial electrical frequency.

\section*{Initial electrical frequency}

Initial electrical frequency. This parameter is visible only if you set Specify initialization by to Initial electrical frequency. The default value is 60 Hz .

\section*{Initial mechanical frequency}

Initial mechanical frequency. This parameter is visible only if you set Specify initialization by to Initial mechanical frequency. The default value is 60 Hz .

\section*{Ports}

The block has the following ports:

\section*{pu}

Physical signal input port associated with mechanical power, per-unit
R
Mechanical rotational conserving port associated with the machine rotor C

Mechanical rotational conserving port associated with the machine case

\section*{See Also}

Machine Inertia | Machine Mechanical Power (SI)

\section*{Machine Mechanical Power (SI)}

Machine mechanical power defined in SI units

\section*{Library}

Machines

\section*{Description}


The Machine Mechanical Power (SI) block supplies specified power to, or draws specified power from, the machine that it connects to. It includes a representation of machine inertia and a mechanical rotational reference. In generator mode, the physical signal input Pm defines the mechanical power in SI units that is input to the machine. In motor mode, it defines the mechanical power output from the machine. The Pm input must always be positive.

The figure shows an equivalent configuration to the Machine Mechanical Power (SI) block using Simscape mechanical rotational components.


\section*{Electrical Defining Equations}

To calculate the torque that it applies to the inertia, the block divides the power demand by the present speed. Specify the Peak torque to rated torque ratio parameter to set the peak torque limit. Use the Specify inertia parameterization by parameter to specify inertia, \(J\), directly or indirectly, with the machine's inertia constant, \(H\).

If you specify the machine's inertia constant, the block calculates inertia as
\[
J=\frac{2 H S_{\text {rated }}}{\left(2 \pi F_{\text {rated }} / N\right)^{2}},
\]
where:
- \(J\) is inertia in \(\mathrm{kg} \# \mathrm{~m}^{2}\).
- \(H\) is the inertia constant in sW/VA.
- \(S_{\text {rated }}\) is the rated apparent power of the connected machine in VA.
- \(F_{\text {rated }}\) is the rated electrical frequency of the connected machine in Hz .
- \(\quad N\) is the number of pole pairs in the connected machine.

Damping represents viscous friction between the machine rotor and mechanical rotational reference. Based on the value you select for the Specify damper parameterization by parameter, you specify a damping coefficient in per-unit or in SI units. If you specify the damping coefficient in per-unit, the block calculates the damping coefficient in SI units using these equations:
\[
\begin{aligned}
& \omega_{\text {base }}=\frac{2 \pi F_{\text {rated }}}{N}, \\
& T_{\text {base }}=\frac{S_{\text {rated }}}{\omega_{\text {base }}} \\
& D_{\text {base }}=\frac{T_{\text {base }}}{\omega_{\text {base }}}
\end{aligned}
\]
and
\[
D=D_{p u} D_{b a s e},
\]
where:
- \(\omega_{\text {base }}\) is the base mechanical speed in rad/s.
- \(T_{\text {base }}\) is the base damping torque in Nm .
- \(D_{\text {base }}\) is the base damping coefficient in \(\mathrm{Nm} /(\mathrm{rad} / \mathrm{s})\).
- \(D_{p u}\) is the damping coefficient in per unit.
- \(D\) is the damping coefficient in SI units of \(\mathrm{Nm} /(\mathrm{rad} / \mathrm{s})\).

\section*{Dialog Box and Parameters}

- "Main Tab" on page 1-146
- "Inertia Tab" on page 1-146
- "Initial Conditions Tab" on page 1-147

\section*{Main Tab}

\section*{Input power sign convention}

Machine type specification. The choices are Generator and Motor. The default value is Generator.

\section*{Rated apparent power}

Rated apparent power of the connected machine. The default value is 555 e 6 VA .

\section*{Rated electrical frequency}

Nominal electrical frequency corresponding to the rated apparent power of the connected machine. The default value is 60 Hz .

\section*{Number of pole pairs}

Number of pole pairs of the connected machine. The default value is 1.

\section*{Peak torque to rated torque ratio}

Ratio that the block multiplies by the base torque to provide the upper limit for the torque that accelerates the inertia. The default value is 2 .

\section*{Inertia Tab}

\section*{Specify inertia parameterization by}

Inertia specification. The choices are Actual Inertia, J and Inertia constant, H . The default value is Inertia constant, H .

\section*{Inertia constant, H}

Inertia constant. This parameter is visible only if you set Specify inertia parameterization by to Inertia constant, H. The default value is \(3.525 \mathrm{sW} /\) VA.

\section*{Actual inertia, J}

Inertia. This parameter is visible only if you set Specify inertia parameterization by to Actual Inertia, J. The default value is \(27548 \mathrm{~kg} \mathrm{\# m}{ }^{2}\).

\section*{Specify damper parameterization by}

Damping specification. The choices are Per-unit damping coefficient, pu_D and SI damping coefficient, D. The default value is Per-unit damping coefficient, pu_D.

\section*{Per-unit damping coefficient}

Damping coefficient in per-unit. This parameter is visible only if you set Specify damper parameterization by to Per-unit damping coefficient, pu_D. The default value is 0.01 .

\section*{SI damping coefficient}

Damping coefficient in SI units. This parameter is visible only if you set Specify damper parameterization by to SI damping coefficient, D. The default value is \(39.0509 \mathrm{Nm} /(\mathrm{rad} / \mathrm{s})\).

\section*{Initial Conditions Tab}

\section*{Specify initialization by}

Frequency initialization. The choices are Initial electrical frequency and Initial mechanical frequency. The default value is Initial electrical frequency.

\section*{Initial electrical frequency}

Initial electrical frequency. This parameter is visible only if you set Specify initialization by to Initial electrical frequency. The default value is 60 Hz .

\section*{Initial mechanical frequency}

Initial mechanical frequency. This parameter is visible only if you set Specify initialization by to Initial mechanical frequency. The default value is 60 Hz.

\section*{Ports}

The block has the following ports:
Pm
Physical signal input port associated with mechanical power, W
R
Mechanical rotational conserving port associated with the machine rotor C

Mechanical rotational conserving port associated with the machine case

\author{
See Also \\ Machine Inertia \| Machine Mechanical Power (pu) \\ \section*{Related Examples} \\ - Three-Phase Asynchronous Machine Starting
}

\section*{MOSFET}

\author{
N-channel MOSFET
}

\section*{Library}

Semiconductors / Fundamental Components


\section*{Description}

The MOSFET block models an n-channel MOSFET (metal-oxide-semiconductor fieldeffect transistor).

The figure shows typical \(i-v\) characteristic for an \(n\)-channel MOSFET.



The MOSFET is in the on state if the gate-source voltage exceeds the specified threshold voltage. Otherwise the device is in the off state.

In the on state, the drain-source path behaves like a linear resistor with resistance \(R_{d s_{-} o n}\).
In the off state, the drain-source path behaves like a linear resistor with low off-state conductance \(G_{\text {off }}\).

The defining Simscape equations for the block are:
```

if G > Vth
v == i*Rds_on;
else
v == i/Goff;
end

```
where:
- \(G\) is the gate-source voltage.
- Vth is the threshold voltage.
- \(v\) is the drain-source voltage.
- \(i\) is the drain-source current.
- Rds_on is the on-state resistance.
- Goff is the off-state conductance.

Using the Integral Diode tab of the block dialog box, you can include an integral source-drain diode. An integral diode protects the semiconductor device by providing a conduction path for reverse current. An inductive load can produce a high reverse-voltage spike when the semiconductor device suddenly switches off the voltage supply to the load.

The table shows you how to set the Integral protection diode parameter based on your goals.
\begin{tabular}{|l|l|l|}
\hline Goal & Value to Select & Block Behavior \\
\hline Prioritize simulation speed. & \begin{tabular}{l} 
Protection diode with \\
no dynamics
\end{tabular} & \begin{tabular}{l} 
The block includes an \\
integral copy of the Diode \\
block. The block dialog box \\
shows parameters relating to \\
the Diode block.
\end{tabular} \\
\hline \begin{tabular}{l} 
Precisely specify reverse- \\
mode charge dynamics.
\end{tabular} & \begin{tabular}{l} 
Protection diode with \\
charge dynamics
\end{tabular} & \begin{tabular}{l} 
The block includes an \\
integral copy of the \\
Commutation Diode block. \\
The block dialog box shows \\
parameters relating to the \\
Commutation Diode block.
\end{tabular} \\
\hline
\end{tabular}

\section*{Dialog Box and Parameters}

- "Main Tab" on page 1-151
- "Integral Diode Tab" on page 1-151

\section*{Main Tab}

On-state resistance, R_DS(on) \(_{\text {(on }}\)
Drain-source resistance when the device is on. The default value is \(0.01 \Omega\).

\section*{Off-state conductance}

Drain-source conductance when the device is off. The value must be less than \(1 / R\), where \(R\) is the value of \(\mathbf{O n}\)-state resistance. The default value is 1e-6 \(\Omega^{-1}\).

\section*{Threshold voltage, Vth}

Gate-source voltage threshold. The device turns on when the gate-source voltage is above this value. The default value is 2 V .

\section*{Integral Diode Tab}

\section*{Integral protection diode}

Block integral protection diode. The default value is Protection diode with no dynamics.

The diodes you can select are:
- Protection diode with no dynamics
- Protection diode with charge dynamics

\section*{Parameters for Protection diode with no dynamics}

When you select Protection diode with no dynamics, additional parameters appear.

\section*{Additional Parameters for Protection diode with no dynamics}

Forward voltage
Minimum voltage required across the + and - block ports for the gradient of the diode i-v characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of \(\mathbf{O n}\) resistance. The default value is 0.8 V .
On resistance
Rate of change of voltage versus current above the forward voltage. The default value is \(0.001 \Omega\).

\section*{Off conductance}

Conductance of the reverse-biased diode. The default value is \(1 \mathrm{e}-5 \Omega^{-1}\).
For more information on these parameters, see Diode.
Parameters for Protection diode with charge dynamics
When you select Protection diode with charge dynamics, additional parameters appear.

\section*{Additional Parameters for Protection diode with charge dynamics}

Forward voltage

Minimum voltage required across the + and - block ports for the gradient of the diode i-v characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of \(\mathbf{O n}\) resistance. The default value is 0.8 V .

\section*{On resistance}

Rate of change of voltage versus current above the forward voltage. The default value is \(0.001 \Omega\).

\section*{Off conductance}

Conductance of the reverse-biased diode. The default value is \(1 \mathrm{e}-5 \Omega^{-1}\).

\section*{Junction capacitance}

Diode junction capacitance. The default value is 50 nF .

\section*{Peak reverse current, iRM}

Peak reverse current measured by an external test circuit. This value must be less than zero. The default value is -235 A .

\section*{Initial forward current when measuring iRM}

Initial forward current when measuring peak reverse current. This value must be greater than zero. The default value is 300 A .

\section*{Rate of change of current when measuring iRM}

Rate of change of current when measuring peak reverse current. This value must be less than zero. The default value is \(-50 \mathrm{~A} / \mu \mathrm{s}\).

\section*{Reverse recovery time parameterization}

Determines how you specify reverse recovery time in the block. The default value is Specify reverse recovery time directly.

If you select Specify stretch factor or Specify reverse recovery charge, you specify a value that the block uses to derive the reverse recovery time. For more information on these options, see "Alternatives to Specifying trr Directly".

\section*{Reverse recovery time, trr}

Interval between the time when the current initially goes to zero (when the diode turns off) and the time when the current falls to less than \(10 \%\) of the peak reverse current. The default value is \(\mathbf{1 5} \mu \mathrm{s}\).

This parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery time directly.

The value of the Reverse recovery time, trr parameter must be greater than the value of the Peak reverse current, iRM parameter divided by the value of the Rate of change of current when measuring iRM parameter.

\section*{Reverse recovery time stretch factor}

Value that the block uses to calculate Reverse recovery time, trr. This value must be greater than 1 . The default value is 3 .

This parameter is visible only if you set Reverse recovery time parameterization to Specify stretch factor.

Specifying the stretch factor is an easier way to parameterize the reverse recovery time than specifying the reverse recovery charge. The larger the value for the stretch factor, the longer it takes for the reverse recovery current to dissipate.

\section*{Reverse recovery charge, Qrr}

Value that the block uses to calculate Reverse recovery time, trr. Use this parameter if the data sheet for your diode device specifies a value for reverse recovery charge instead of a value for reverse recovery time.

Reverse recovery charge is the total charge that remains to dissipate when the diode turns off. The value must be less than \(-\frac{i^{2}{ }_{R M}}{2 a}\),
where:
- \(i_{R M}\) is the value specified for Peak reverse current, iRM.
- \(a\) is the value specified for Rate of change of current when measuring iRM.

The default value is \(\mathbf{1 5 0 0} \mu \mathrm{As}\).
The parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery charge.

For more information on these parameters, see Commutation Diode.

\section*{Ports}

This figure shows the block port names.


G
Port associated with the gate terminal. You can set the port to either a physical signal or electrical port.

S
Electrical conserving port associated with the source terminal.
D
Electrical conserving port associated with the drain terminal.

\section*{Related Examples}
- "Switch Between Physical Signal and Electrical Ports"

\section*{Neutral Port}

Connect phases of three-phase system to electrical conserving port

\section*{Library}

Connections

\section*{Description}


The Neutral Port block connects the phases of a three-phase system to an electrical conserving port. You can connect the electrical port to electrical components from the Simscape and SimElectronics \({ }^{\circledR}\) libraries.

Note: If you do not need to connect the neutral port to other blocks, use a Floating Neutral block instead. If you want to ground the neutral port, use a Grounded Neutral block.

\section*{Dialog Box and Parameters}


The block has no parameters.

\section*{Ports}

The block has the following ports:

Expandable "three-phase port"
n
Electrical conserving port associated with the neutral point

\section*{See Also}

Floating Neutral| Neutral Port

\section*{Related Examples}
- "Expand and Collapse Three-Phase Ports on a Block"

\section*{Open Circuit}

Three-phase connection that draws no current

\section*{Library}

Connections

\section*{\&}

\section*{Description}

The Open Circuit block models a three-phase connection that draws no current on any of the three phases. In Simscape, physical network block diagrams do not allow unconnected conserving ports. Therefore, use the Open Circuit block to terminate threephase electrical ports on other blocks that you want to leave open-circuit.

\section*{Dialog Box and Parameters}
\begin{tabular}{l}
\begin{tabular}{l} 
Block Parameters: Open Circuit \\
Open Circuit \\
Electrical open circuit. The component draws no current. \\
Right-click on the block and select Simscape block choices to access \\
variant implementations of this block. \\
\(\qquad\) OK Cancel Aelp Aply
\end{tabular} \\
\hline
\end{tabular}

The block has no parameters.

\section*{Ports}

The block has the following ports:

Expandable "three-phase port"

\section*{Related Examples}
- "Expand and Collapse Three-Phase Ports on a Block"

\section*{Permanent Magnet Synchronous Motor}

Permanent magnet synchronous motor with sinusoidal flux distribution

\section*{Library}

Machines / Permanent Magnet Rotor

\section*{Description}


The Permanent Magnet Synchronous Motor block models a permanent magnet synchronous motor with a three-phase wye-wound stator. The figure shows the equivalent electrical circuit for the stator windings.


This figure shows the motor construction with a single pole-pair on the rotor.


The rotor magnetic field due to the permanent magnet(s) creates a sinusoidal rate of change of flux with rotor angle.

For the axes convention in the preceding figure, the a-phase and permanent magnet fluxes are aligned when rotor angle \(\theta_{\mathrm{r}}\) is zero. The block supports a second rotor axis definition in which rotor angle is defined as the angle between the a-phase magnetic axis and the rotor q axis.

\section*{Electrical Defining Equations}

Voltages across the stator windings are defined by
\[
\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right]=\left[\begin{array}{ccc}
R_{s} & 0 & 0 \\
0 & R_{s} & 0 \\
0 & 0 & R_{s}
\end{array}\right]\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right]+\left[\begin{array}{c}
\frac{d \psi_{a}}{d t} \\
\frac{d \psi_{b}}{d t} \\
\frac{d \psi_{c}}{d t}
\end{array}\right],
\]
where:
- \(v_{a}, v_{b}\), and \(v_{c}\) are the individual phase voltages across the stator windings.
- \(R_{s}\) is the equivalent resistance of each stator winding.
- \(i_{a}, i_{b}\), and \(i_{c}\) are the currents flowing in the stator windings.
\[
\frac{d \psi_{a}}{d t}, \frac{d \psi_{b}}{d t}, \text { and } \frac{d \psi_{c}}{d t}
\]
are the rates of change of magnetic flux in each stator winding.
The permanent magnet and the three windings contribute to the total flux linking each winding. The total flux is defined by
\[
\left[\begin{array}{l}
\psi_{a} \\
\psi_{b} \\
\psi_{c}
\end{array}\right]=\left[\begin{array}{lll}
L_{a a} & L_{a b} & L_{a c} \\
L_{b a} & L_{b b} & L_{b c} \\
L_{c a} & L_{c b} & L_{c c}
\end{array}\right]\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right]+\left[\begin{array}{l}
\psi_{a m} \\
\psi_{b m} \\
\psi_{c m}
\end{array}\right],
\]
where:
- \(\psi_{a}, \psi_{b}\), and \(\psi_{c}\) are the total fluxes linking each stator winding.
- \(L_{a a}, L_{b b}\), and \(L_{c c}\) are the self-inductances of the stator windings.
- \(L_{a b}, L_{a c}, L_{b a}\), etc. are the mutual inductances of the stator windings.
- \(\psi_{a m}, \psi_{b m}\), and \(\psi_{c m}\) are the permanent magnet fluxes linking the stator windings.

The inductances in the stator windings are functions of rotor angle, defined by
\[
\begin{aligned}
& L_{a a}=L_{s}+L_{m} \cos \left(2 \theta_{r}\right), \\
& L_{b b}=L_{s}+L_{m} \cos \left(2\left(\theta_{r}-2 \pi / 3\right)\right), \\
& L_{c c}=L_{s}+L_{m} \cos \left(2\left(\theta_{r}+2 \pi / 3\right)\right), \\
& L_{a b}=L_{b a}=-M_{s}-L_{m} \cos \left(2\left(\theta_{r}+\pi / 6\right)\right), \\
& L_{b c}=L_{c b}=-M_{s}-L_{m} \cos \left(2\left(\theta_{r}+\pi / 6-2 \pi / 3\right)\right),
\end{aligned}
\]
and
\[
L_{c a}=L_{a c}=-M_{s}-L_{m} \cos \left(2\left(\theta_{r}+\pi / 6+2 \pi / 3\right)\right),
\]
where:
- \(L_{s}\) is the stator self-inductance per phase. This is the average self-inductance of each of the stator windings.
- \(L_{m}\) is the stator inductance fluctuation. This is the amplitude of the fluctuation in selfinductance and mutual inductance with changing rotor angle.
- \(M_{s}\) is the stator mutual inductance. This is the average mutual inductance between the stator windings.

The permanent magnet flux linking winding a is a maximum when \(\theta_{\mathrm{r}}=0^{\circ}\) and zero when \(\theta_{\mathrm{r}}=90^{\circ}\). Therefore, the linked motor flux is defined by
\[
\left[\begin{array}{l}
\psi_{a m} \\
\psi_{b m} \\
\psi_{c m}
\end{array}\right]=\left[\begin{array}{c}
\psi_{m} \cos \theta_{r} \\
\psi_{m} \cos \left(\theta_{r}-2 \pi / 3\right) \\
\psi_{m} \cos \left(\theta_{r}+2 \pi / 3\right)
\end{array}\right] .
\]

\section*{Simplified Electrical Equations}

Applying Park's transformation to the block electrical defining equations produces an expression for torque that is independent of rotor angle.

Park's transformation is defined by
\[
P=2 / 3\left[\begin{array}{ccc}
\cos \theta_{e} & \cos \left(\theta_{e}-2 \pi / 3\right) & \cos \left(\theta_{e}+2 \pi / 3\right) \\
-\sin \theta_{e} & -\sin \left(\theta_{e}-2 \pi / 3\right) & -\sin \left(\theta_{e}+2 \pi / 3\right) \\
0.5 & 0.5 & 0.5
\end{array}\right] .
\]
where \(\theta_{e}\) is the electrical angle defined as \(\mathrm{N}_{\mathrm{r}}\). N is the number of pole pairs.
The inverse of Park's transformation is defined by
\[
P^{-1}=\left[\begin{array}{ccc}
\cos \theta_{e} & -\sin \theta_{e} & 1 \\
\cos \left(\theta_{e}-2 \pi / 3\right) & -\sin \left(\theta_{e}-2 \pi / 3\right) & 1 \\
\cos \left(\theta_{e}+2 \pi / 3\right) & -\sin \left(\theta_{e}+2 \pi / 3\right) & 1
\end{array}\right] .
\]

Applying Park's transformation to the first two electrical defining equations produces the following equations that define the block behavior:
\[
\begin{aligned}
& v_{d}=R_{s} i_{d}+L_{d} \frac{d i_{d}}{d t}-N \omega i_{q} L_{q} \\
& v_{q}=R_{s} i_{q}+L_{q} \frac{d i_{q}}{d t}+N \omega\left(i_{d} L_{d}+\psi_{m}\right) \\
& v_{0}=R_{s} i_{0}+L_{0} \frac{d i_{0}}{d t}
\end{aligned}
\]
and
\[
T=\frac{3}{2} N\left(i_{q}\left(i_{d} L_{d}+\psi_{m}\right)-i_{d} i_{q} L_{q}\right)
\]
where:
- \(v_{d}, v_{q}\), and \(v_{0}\) are the d-axis, q -axis, and zero-sequence voltages, defined by
\[
\left[\begin{array}{l}
v_{d} \\
v_{q} \\
v_{0}
\end{array}\right]=P\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right] .
\]
- \(i_{d}, i_{q}\), and \(i_{0}\) are the d-axis, \(q\)-axis, and zero-sequence currents, defined by
\[
\left[\begin{array}{l}
i_{d} \\
i_{q} \\
i_{0}
\end{array}\right]=P\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right] .
\]
- \(L_{d}=L_{s}+M_{s}+3 / 2 L_{m} . L_{d}\) is the stator d-axis inductance.
- \(L_{q}=L_{s}+M_{s}-3 / 2 L_{m} . L_{q}\) is the stator q-axis inductance.
- \(L_{0}=L_{s}-2 M_{s} . L_{0}\) is the stator zero-sequence inductance.
- \(\omega\) is the rotor mechanical rotational speed.
- \(N\) is the number of rotor permanent magnet pole pairs.
- \(T\) is the rotor torque. Torque flows from the motor case (block physical port C) to the motor rotor (block physical port R).

\section*{Dialog Box and Parameters}


\section*{Main Tab}

\section*{Number of pole pairs}

Number of permanent magnet pole pairs on the rotor. The default value is 6 .

\section*{Permanent magnet flux linkage}

Peak permanent magnet flux linkage with any of the stator windings. The default value is 0.03 Wb .

\section*{Stator parameterization}

Set of stator parameters that the block dialog box shows. The default value is Specify Ld, Lq and LO.

\section*{Stator d-axis inductance, Ld}

D-axis inductance. This parameter is visible only if you set Stator parameterization to Specify Ld, Lq and LO. The default value is 0.00025 H .

Stator q-axis inductance, Lq

Q -axis inductance. This parameter is visible only if you set Stator parameterization to Specify Ld, Lq and LO. The default value is 0.00019 H .

\section*{Stator zero-sequence inductance, L0}

Zero-sequence inductance. This parameter is visible only if you set Stator parameterization to Specify Ld, Lq and LO. The default value is 0.00016 H .

\section*{Stator self-inductance per phase, Ls}

Average self-inductance of each of the three stator windings. This parameter is visible only if you set Stator parameterization to Specify Ls, Lm and Ms. The default value is 0.0002 H .

\section*{Stator inductance fluctuation, Lm}

Amplitude of the fluctuation in self-inductance and mutual inductance of the stator windings with rotor angle. This parameter is visible only if you set Stator parameterization to Specify Ls, Lm and Ms. The default value is 0.00002 H .

\section*{Stator mutual inductance, Ms}

Average mutual inductance between the stator windings. This parameter is visible only if you set Stator parameterization to Specify Ls, Lm and Ms. The default value is 0.00002 H .

\section*{Stator resistance per phase, Rs}

Resistance of each of the stator windings. The default value is \(0.013 \Omega\).

\section*{Initial Conditions Tab}

\section*{Initial currents, [i_d i_q i_0]}

Initial d-axis, \(q\)-axis, and zero-sequence currents. The default value is [0, 0, 0] A.

\section*{Rotor angle definition}

Reference point for the rotor angle measurement. The default value is Angle between the a-phase magnetic axis and the \(d\) axis. This definition is shown in the motor construction figure. When you select this value, the rotor and aphase fluxes are aligned when the rotor angle is zero.

The other value you can choose for this parameter is Angle between the a-phase magnetic axis and the \(q\) axis. When you select this value, the a-phase current generates maximum torque when the rotor angle is zero.

\section*{Initial rotor angle}

Initial angle of the rotor. The default value is 0 deg.

\section*{Ports}

Expandable "three-phase port".
n
Electrical conserving port associated with the neutral phase.
R
Mechanical rotational conserving port associated with the motor rotor.
C
Mechanical rotational conserving port associated with the motor case.

\section*{References}
[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
[2] ] Anderson, P. M. Analysis of Faulted Power Systems. Hoboken, NJ: Wiley-IEEE Press, 1995.

\section*{Related Examples}
- "Expand and Collapse Three-Phase Ports on a Block"

\section*{Phase Permute}

Permute phases of three-phase system

\section*{Library}

Connections

\section*{Description}


The Phase Permute block cyclically permutes (changes the order of) the phases of a three-phase system.

The block has two three-phase connections associated with its terminals. If you consider the side of the block labeled \(\sim 123\) ( \(\mathbf{a}, \mathbf{b} 1, \mathbf{c} 1\) in expanded view) as side 1 and the side of the block labeled \(\sim \mathbf{2 3 1}(\mathbf{a} 2, \mathbf{b 2}, \mathbf{c} 2)\) as side 2 , then the block connects phases as shown in the table.
\begin{tabular}{|l|l|}
\hline Side 1 Phase & Connects to Side 2 Phase \\
\hline a1 & c2 \\
\hline b1 & a2 \\
\hline c1 & b2 \\
\hline
\end{tabular}

\section*{Dialog Box and Parameters}
```

I Block Parameters: Phase Permute
Phase Permute
Permute sequence of phases between 1-2-3 and 2-3-1.
Right-click on the block and select Simscape block choices to access variant implementations of this block.

The block has no parameters.

Ports

The block has the following ports:
~123
Expandable "three-phase port"
~231
Expandable three-phase port

Related Examples

- "Expand and Collapse Three-Phase Ports on a Block"

Phase Splitter

Expand composite three-phase port

Library

Connections

Description

The Phase Splitter block expands a composite three-phase port into its constituent phases.

The expanded output ports are electrical conserving ports. Therefore, you can connect the output ports to electrical components from the Simscape and SimElectronics ${ }^{\circledR}$ libraries.

Dialog Box and Parameters

```
H}\mathrm{ Block Parameters: Phase Splitter 
    Phase Splitter
    Separates out a three-phase electrical connection into its constituent
    a,b}\mathrm{ and c phases.

The block has no parameters.

\section*{Ports}

The block has the following ports:

Composite "three-phase port"
a,b,c
Constituent phases of the expanded three-phase port

\section*{Related Examples}
- "Expand and Collapse Three-Phase Ports on a Block"

\section*{Phase Voltage Sensor}

Measure phase voltages in three-phase system

\section*{Library}

Sensors

\section*{Description}


The Phase Voltage Sensor block represents an ideal three-phase voltage sensor. It measures the voltages across the three-phase ports \(\sim 1\) and \(\sim 2\) and outputs a single threeelement, physical signal vector. Each element of the physical signal output vector is equal to the voltage in the respective phase.

\section*{Dialog Box and Parameters}


The block has no parameters.

\section*{Ports}

The block has the following ports:
~1
Expandable "three-phase port"
\(\sim 2\)
Expandable "three-phase port"
V
Three-element physical signal vector output port associated with the phase voltages

\section*{See Also}

Line Voltage Sensor

\section*{Related Examples}
- "Expand and Collapse Three-Phase Ports on a Block"

\section*{Primary Winding}

Linear non-ideal transformer winding

\section*{Library}

Passive Devices / Transformers / Fundamental Components


\section*{Description}

The Primary Winding block models linear non-ideal winding of a transformer with linear winding leakage and linear core magnetization effects. Although magnetization effects occur in the magnetic core, it is common practice to place mathematically equivalent electrical components on the electrical winding and parameterize them using electrical parameters. The figure shows the equivalent circuit diagram for the primary winding.

- \(R_{1}\) is the leakage resistance.
- \(\mathrm{L}_{1}\) is the leakage inductance.
- \(R_{m}\) is the magnetization resistance.
- \(\mathrm{L}_{m}\) is the magnetization inductance.

\section*{Dialog Box and Parameters}

- "Main Tab" on page 1-175
- "Variables Tab" on page 1-176

\section*{Main Tab}

\section*{Number of winding turns}

Number of wire turns on the transformer winding. The default value is 10.

\section*{Leakage resistance}

Power loss in the winding. The default value is \(1 \mathrm{e}-3 \Omega\).

\section*{Leakage inductance}

Magnetic flux loss in the winding. The default value is \(1 \mathrm{e}-3 \mathrm{H}\).

\section*{Core-loss resistance}

Magnetic losses in the transformer core. The default value is \(1 \mathrm{e} 6 \Omega\).

\section*{Magnetization inductance}

Magnetic effects in the transformer core when operating in its linear region. The default value is 1 e 6 H .

\section*{Variables Tab}

Use the Variables tab to set the priority and initial target values for the block variables prior to simulation. For more information, see the Simscape topic, "Set Priority and Initial Target for Block Variables".

\section*{Ports}

The block has the following ports:
\(+\)
Positive electrical conserving port

Negative electrical conserving port N

North magnetic conserving port S

South magnetic conserving port

\section*{See Also}

Electromagnetic Converter | Secondary Winding

\section*{Rectifier}

Convert three-phase AC voltage to fixed DC voltage

\section*{Library}

Semiconductors

\section*{Description}


The Rectifier block models a three-arm diode bridge circuit that converts a three-phase AC voltage to a fixed DC voltage. The figure shows the equivalent circuit for the threearm diode bridge.


Using the Charge Dynamics tab of the block dialog box, you can choose the type of diode that the three-arm bridge circuit uses. The table shows you how to set the Model dynamics parameter based on your goals.
\begin{tabular}{|l|l|l|}
\hline Goal & Value to Select & Block Behavior \\
\hline Prioritize simulation speed. & No dynamics & \begin{tabular}{l} 
Each arm of the bridge \\
circuit uses a copy of the \\
Diode block. The block \\
dialog box does not display \\
additional parameters.
\end{tabular} \\
\hline \begin{tabular}{l} 
Precisely specify reverse- \\
mode charge dynamics.
\end{tabular} & Model charge dynamics & \begin{tabular}{l} 
Each arm of the bridge \\
circuit uses a copy of the \\
Commutation Diode block. \\
The block dialog box shows \\
parameters relating to the \\
Commutation Diode block.
\end{tabular} \\
\hline
\end{tabular}

\section*{Dialog Box and Parameters}

- "Main Tab" on page 1-178
- "Charge Dynamics Tab" on page 1-179

\section*{Main Tab}

\section*{Forward voltage}

Minimum voltage required across the + and - ports of each diode for the gradient of the diode i-v characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of On resistance. The default forward voltage value is 0.8 V .

\section*{On resistance}

Rate of change of voltage versus current above the forward voltage for each diode. The default value is \(0.001 \Omega\).

\section*{Off conductance}

Conductance of each reverse-biased diode. The default value is \(1 \mathrm{e}-5 \Omega^{-1}\).

\section*{Charge Dynamics Tab}

\section*{Model dynamics}

Diode charge dynamics. The default value is No dynamics.
The charge dynamics options you can select are:
- No dynamics
- Model charge dynamics

\section*{Parameters for Model charge dynamics}

When you select Model charge dynamics, additional parameters appear.

\section*{Additional Parameters for Model charge dynamics}

\section*{Junction capacitance}

Diode junction capacitance. The default value is 50 nF .

\section*{Peak reverse current, iRM}

Peak reverse current measured by an external test circuit. This value must be less than zero. The default value is -235 A .

\section*{Initial forward current when measuring iRM}

Initial forward current when measuring peak reverse current. This value must be greater than zero. The default value is 300 A .
Rate of change of current when measuring iRM

Rate of change of current when measuring peak reverse current. This value must be less than zero. The default value is \(-50 \mathrm{~A} / \mu \mathrm{s}\).

\section*{Reverse recovery time parameterization}

Determines how you specify reverse recovery time in the block. The default value is Specify reverse recovery time directly.

If you select Specify stretch factor or Specify reverse recovery charge, you specify a value that the block uses to derive the reverse recovery time. For more information on these options, see "Alternatives to Specifying trr Directly".

\section*{Reverse recovery time, trr}

Interval between the time when the current initially goes to zero (when the diode turns off) and the time when the current falls to less than \(10 \%\) of the peak reverse current. The default value is \(\mathbf{1 5} \mu \mathrm{s}\).

This parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery time directly.

The value of the Reverse recovery time, trr parameter must be greater than the value of the Peak reverse current, iRM parameter divided by the value of the Rate of change of current when measuring iRM parameter.

\section*{Reverse recovery time stretch factor}

Value that the block uses to calculate Reverse recovery time, trr. This value must be greater than 1 . The default value is 3 .

This parameter is visible only if you set Reverse recovery time parameterization to Specify stretch factor.

Specifying the stretch factor is an easier way to parameterize the reverse recovery time than specifying the reverse recovery charge. The larger the value for the stretch factor, the longer it takes for the reverse recovery current to dissipate.

\section*{Reverse recovery charge, Qrr}

Value that the block uses to calculate Reverse recovery time, trr. Use this parameter if the data sheet for your diode device specifies a value for reverse recovery charge instead of a value for reverse recovery time.

Reverse recovery charge is the total charge that remains to dissipate when the diode turns off. The value must be less than \(-\frac{i^{2}{ }_{k M}}{2 a}\),
where:
- \(i_{R M}\) is the value specified for Peak reverse current, iRM.
- \(a\) is the value specified for Rate of change of current when measuring iRM.

The default value is \(\mathbf{1 5 0 0} \mu \mathrm{As}\).
The parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery charge.

For more information on these parameters, see Commutation Diode.

\section*{Ports}

The block has the following ports:

Expandable "three-phase port"
\(+\)
Electrical conserving port associated with the positive terminal

Electrical conserving port associated with the negative terminal

\section*{See Also}

Converter

\section*{Related Examples}
- "Expand and Collapse Three-Phase Ports on a Block"

\section*{RLC}

Three-phase line impedance

\section*{Library}

Passive Devices

\section*{Description}


The RLC block models a three-phase impedance with two three-phase connections. Each of the three identical impedance components can include any combination of a resistor \((\mathrm{R})\), capacitor \((\mathrm{C})\), and inductor (L), connected in series or in parallel.

Define the values for the R, L, and C components by specifying the appropriate block parameters. Do not set the parameter values to zero or infinity to remove terms; instead, select the correct option for the Component structure parameter.

For certain combinations of R, L, and C, you must specify parasitic resistance or conductance values, which can help numerical convergence when simulating some circuit topologies. These parasitic terms ensure that an inductor has a small parallel resistive path and that a capacitor has a small series resistance.

\section*{Dialog Box and Parameters}

- "Main Tab" on page 1-183
- "Parasitics Tab" on page 1-184
- "Initial Conditions Tab" on page 1-184

\section*{Main Tab}

\section*{Component structure}

Select the desired combination of a resistor (R), capacitor (C), and inductor (L), connected in series or in parallel. The default is R , resistor.

\section*{Resistance}

Resistance of each of the line impedances. This parameter is visible only when you select a component structure that includes a resistor. The default value is \(1 \Omega\).

\section*{Inductance}

Inductance of each of the line impedances. This parameter is visible only when you select a component structure that includes an inductor. The default value is 0.001 H.

\section*{Capacitance}

Capacitance in each of the line impedances. This parameter is visible only when you select a component structure that includes a capacitor. The default value is 1e-6 F.

\section*{Parasitics Tab}

\section*{Parasitic series resistance}

Represents small parasitic effects. The parameter value corresponds to the series resistance value added to all instances of capacitors in the load. The default value is 1e-6 \(\Omega\).

\section*{Parasitic parallel conductance}

Represents small parasitic effects. The parameter value corresponds to the parallel conductance value added across all instances of inductors in the load. The default value is \(1 \mathrm{e}-61 / \Omega\).

\section*{Initial Conditions Tab}

\section*{Initial inductor current [ Ia Ib Ic ]}

Initial current in the a, b, and c phase inductors, respectively. This parameter is visible only when you select a component structure that includes an inductor. The default value is \(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\) A.

\section*{Initial capacitor voltage [ Va Vb Vc ]}

Initial voltage across the \(\mathrm{a}, \mathrm{b}\), and c phase capacitors, respectively. This parameter is visible only when you select a component structure that includes a capacitor. The default value is \(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right] \mathrm{V}\).

\section*{Block Parameterization}

The following table lists the block parameters for each of the configurations, based on the selected Component structure option.
\begin{tabular}{|l|l|l|l|}
\hline Component Structure & Main Tab & Parasitics Tab & Initial Conditions Tab \\
\hline R & Resistance & None & None \\
\hline L & Inductance & \begin{tabular}{l} 
Parasitic parallel \\
conductance
\end{tabular} & \begin{tabular}{l} 
Initial inductor current \\
[ Ia Ib Ic ]
\end{tabular} \\
\hline C & Capacitance & \begin{tabular}{l} 
Parasitic series \\
resistance
\end{tabular} & \begin{tabular}{l} 
Initial capacitor voltage \\
[ Va Vb Vc ]
\end{tabular} \\
\hline Series RL & Resistance & \begin{tabular}{l} 
Parasitic parallel \\
conductance
\end{tabular} & \begin{tabular}{l} 
Initial inductor current \\
[ Ia Ib Ic ]
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Component Structure & Main Tab & Parasitics Tab & Initial Conditions Tab \\
\hline & Inductance & & \\
\hline Series RC & \begin{tabular}{l}
Resistance \\
Capacitance
\end{tabular} & None & Initial capacitor voltage [ Va Vb Vc ] \\
\hline Series LC & Inductance Capacitance & Parasitic parallel conductance & \begin{tabular}{l}
Initial inductor current [ Ia Ib Ic ] \\
Initial capacitor voltage [ Va Vb Vc ]
\end{tabular} \\
\hline Series RLC & Resistance Inductance Capacitance & Parasitic parallel conductance & \begin{tabular}{l}
Initial inductor current [ Ia Ib Ic ] \\
Initial capacitor voltage [ Va Vb Vc ]
\end{tabular} \\
\hline Parallel RL & \begin{tabular}{l}
Resistance \\
Inductance
\end{tabular} & None & Initial inductor current [ Ia Ib Ic ] \\
\hline Parallel RC & Resistance Capacitance & Parasitic series resistance & Initial capacitor voltage [ Va Vb Vc ] \\
\hline Parallel LC & Inductance Capacitance & Parasitic series resistance & \begin{tabular}{l}
Initial inductor current [ Ia Ib Ic ] \\
Initial capacitor voltage [ Va Vb Vc ]
\end{tabular} \\
\hline Parallel RLC & \begin{tabular}{l}
Resistance \\
Inductance \\
Capacitance
\end{tabular} & Parasitic series resistance & \begin{tabular}{l}
Initial inductor current [ Ia Ib Ic ] \\
Initial capacitor voltage [ Va Vb Vc ]
\end{tabular} \\
\hline
\end{tabular}

\section*{Ports}

The block has two expandable "three-phase ports", \(\sim 1\) and \(\sim 2\), representing the two terminals of the three-phase line.

\author{
See Also \\ Delta-Connected Load | Wye-Connected Load \\ \section*{Related Examples} \\ - "Expand and Collapse Three-Phase Ports on a Block"
}

\section*{Secondary Winding}

Linear non-ideal transformer winding

\section*{Library}

Passive Devices / Transformers / Fundamental Components


\section*{Description}

The Secondary Winding block models linear non-ideal winding of a transformer with linear winding leakage effects. The figure shows the equivalent circuit diagram for the secondary winding.

- \(R_{1}\) is the leakage resistance.
- \(\mathrm{L}_{1}\) is the leakage inductance.

\section*{Dialog Box and Parameters}

- "Main Tab" on page 1-188
- "Variables Tab" on page 1-188

\section*{Main Tab}

\section*{Number of winding turns}

Number of wire turns on the transformer winding. The default value is 10.

\section*{Leakage resistance}

Power loss in the winding. The default value is \(1 \mathrm{e}-3 \Omega\).

\section*{Leakage inductance}

Magnetic flux loss in the winding. The default value is \(1 \mathrm{e}-3 \mathrm{H}\).

\section*{Variables Tab}

Use the Variables tab to set the priority and initial target values for the block variables prior to simulation. For more information, see the Simscape topic, "Set Priority and Initial Target for Block Variables".

\section*{Ports}

The block has the following ports:
\(+\)
Positive electrical conserving port

Negative electrical conserving port
N
North magnetic conserving port
S
South magnetic conserving port

\author{
See Also \\ Electromagnetic Converter | Primary Winding
}

\section*{Single-Phase Circuit Breaker}

Single-pole single-throw circuit breaker

\section*{Library}

Switches \& Breakers / Fundamental Components


\section*{Description}

The Single-Phase Circuit Breaker block models a single-phase circuit breaker that uses an external signal and phase current information to break an electrical circuit.

The table shows how the external signal \(\mathrm{V} T\) controls the block behavior.
\begin{tabular}{|l|l|l|}
\hline Condition & Block Behavior & \begin{tabular}{l} 
Resistance Parameter \\
Used
\end{tabular} \\
\hline VT < Threshold & \begin{tabular}{l} 
The breaker is closed. Port 1 connects to port \\
2.
\end{tabular} & Closed Resistance \\
\hline \begin{tabular}{l} 
VT >= \\
Threshold
\end{tabular} & \begin{tabular}{l} 
When the current in port 1 goes through \\
zero, the phase disconnects from port 2. The \\
breaker is open.
\end{tabular} & Open Conductance \\
\hline
\end{tabular}

\section*{Dialog Box and Parameters}

Yi. Block Parameters: Single-Phase Circuit Breaker

Single-Phase Circuit Breaker
The block represents an AC circuit breaker controlled by an external control signal vT. The breaker is closed if voltage vT is less than the threshold. If vT rises above the threshold, then the circuit is broken when the current next crosses zero.

Right-click on the block and select Simscape block choices to access variant implementations of this block.
Settings


\section*{Closed resistance}

Resistance between ports 1 and 2 when the breaker is closed. The default value is \(0.001 \Omega\).

\section*{Open conductance}

Conductance between ports 1 and 2 when the breaker is open. The default value is 1e-6 \(\Omega^{-1}\).

\section*{Threshold}

Threshold voltage for the control port VT. The block uses the threshold voltage and the value of VT at time \(=0\) to determine whether the breaker is open or closed at the start of the simulation. When the voltage rises above the threshold, the breaker opens each phase as its current crosses zero. When the control port voltage falls below the threshold, the breaker closes. The default value is 0 V .

\section*{Ports}

The block has the following ports:
1
Single-phase port
2
Single-phase port
vT
Scalar control port, which is either a physical signal or an electrical port.

\section*{See Also}

Circuit Breaker

\section*{Related Examples}
- "Switch Between Physical Signal and Electrical Ports"

\section*{Single-Phase Switch}

Single-pole single-throw switch

\section*{Library}

Switches \& Breakers / Fundamental Components


\section*{Description}

The Single-Phase Switch block models a single-pole single-throw switch that uses an external signal to connect port 1 to port 2 via internal resistance.

The table shows how the external signal vT controls the block behavior.
\begin{tabular}{|l|l|l|}
\hline Condition & Block Behavior & \begin{tabular}{l} 
Resistance Parameter \\
Used
\end{tabular} \\
\hline VT \(\leq\) Threshold & \begin{tabular}{l} 
The switch is open. Port 1 is connected to port \\
2 via large internal resistance.
\end{tabular} & Open conductance \\
\hline VT > Threshold & \begin{tabular}{l} 
The switch is closed. Port 1 is connected to \\
port 2 via small internal resistance.
\end{tabular} & Closed resistance \\
\hline
\end{tabular}

\section*{Dialog Box and Parameters}

Block Parameters: Single-Phase Switch

Single-Phase Switch
The block represents a Single-Pole Single-Throw (SPST) switch controlled by an external control signal VT. If vT is greater than the threshold, then the switch is closed, otherwise the switch is open.

Right-click on the block and select Simscape block choices to access variant implementations of this block.
Settings
\begin{tabular}{|ll|l|}
\hline Parameters & & \\
\hline Closed resistance: & 0.001 & Ohm \\
Open conductance: & \(1 \mathrm{e}-6\) & \(1 / \mathrm{Ohm}^{2}\) \\
Threshold: & 0 & V \\
\hline
\end{tabular}

\section*{Closed resistance}

Resistance between ports 1 and 2 when the switch is closed. The default value is \(0.001 \Omega\).

\section*{Open conductance}

Conductance between ports 1 and 2 when the switch is open. The default value is 1e-6 \(\Omega^{-1}\).

\section*{Threshold}

Threshold voltage for the control port VT. When the voltage is above the threshold, the switch is closed. The default value is 0 V .

\section*{Ports}

The block has the following ports:

1
Single-phase port
2
Single-phase port
vT
Scalar control port, which is either a physical signal or an electrical port.

\section*{See Also}

Single-Phase Two-Way Switch | Switch | Two-Way Switch

\section*{Related Examples}
- "Switch Between Physical Signal and Electrical Ports"

\section*{Single-Phase Two-Way Switch}

Single-pole double-throw switch

\section*{Library}

Switches \& Breakers / Fundamental Components


\section*{Description}

The Single-Phase Two-Way Switch block models a single-pole double-throw switch that uses an external signal to connect the port 1 to either of two ports 2 or 3 via internal resistance.

The table shows how the external signal vT controls the block behavior.
\begin{tabular}{|l|l|l|}
\hline Condition & Block Behavior & \begin{tabular}{l} 
Resistance Parameter \\
Used
\end{tabular} \\
\hline VT \(\leq\) Threshold & \begin{tabular}{l} 
Port 1 is connected to port 2 via internal \\
resistance. Port 3 is unconnected.
\end{tabular} & \begin{tabular}{l} 
Open conductance \\
(port 1 to port \\
3).Closed resistance \\
(port 1 to port 2)
\end{tabular} \\
\hline VT > Threshold & \begin{tabular}{l} 
Port 1 is connected to port 3 via internal \\
resistance. Port 2 is unconnected.
\end{tabular} & \begin{tabular}{l} 
Open conductance \\
(port 1 to port \\
2).Closed resistance \\
(port 1 to port 3)
\end{tabular} \\
\hline
\end{tabular}

\section*{Dialog Box and Parameters}

Block Parameters: Single-Phase Two-Way Switch

Single-Phase Two-Way Switch
The block represents a Single-Pole Double-Throw (SPDT) switch controlled by an external control signal vT. If vT is greater than the threshold, then the switch common port 1 connects to port 3, otherwise it connects to port 2.

Right-click on the block and select Simscape block choices to access variant implementations of this block.
Settings
\begin{tabular}{|l|l|l|}
\hline Parameters & & \\
\hline Closed resistance: & 0.001 & Ohm \\
Open conductance: & \(1 \mathrm{e}-6\) & \(1 / \mathrm{Ohm}\) \\
Threshold: & 0 & V \\
\hline
\end{tabular}

\section*{Closed resistance}

Resistance between ports 1 and 3 when the switch is closed. The default value is \(0.001 \Omega\).

\section*{Open conductance}

Conductance between ports 1 and 2 when the switch is open. The default value is 1e-6 \(\Omega^{-1}\).

\section*{Threshold}

Threshold voltage for the control port VT. When the voltage is above the threshold, the switch is closed. The default value is 0 V .

\section*{Ports}

The block has the following ports:

Single-phase port
2
Single-phase port
3
Single-phase port
vT
Scalar control port, which is either a physical signal or an electrical port.

\author{
See Also
}

Single-Phase Switch | Switch | Two-Way Switch

\section*{Related Examples}
- "Switch Between Physical Signal and Electrical Ports"

\section*{Six-Pulse Gate Multiplexer}

Multiplex gate input signals to Converter block

\section*{Library}

Semiconductors

\section*{Description}


The Six-Pulse Gate Multiplexer block routes gate voltage signals to the six switching devices in a Converter block. The block multiplexes the six separate gate signals into a single vector.

If you want to use SimElectronics to model the electronics that drive the Converter block, you can switch the input ports of the Six-Pulse Gate Multiplexer block from physical signal ports to electrical ports.

When you switch the block inputs to electrical ports, the block shows additional electrical reference input ports. The additional electrical reference ports are associated with the individual phase voltages that connect to the high-side switching devices in the Converter block and the negative DC voltage common to each low-side switching device in the Converter block.

\section*{Dialog Box and Parameters}
Six-Pulse Gate Multiplexer
This block multiplexes the connections required to control a three-
phase converter into a single vector G . Use this block in conjunction
with the Converter block in the Semiconductors sub-library.
Right-click to select between physical-signal and electrical port
variants.
OK Cancel

The block has no parameters.

\section*{Ports}

The block has the following ports:
Ga(H), Gb(H), Gc(H)
Ports associated with the gate terminals of the Converter block high-side switching devices. You can set the ports to either physical signal or electrical ports.
\(\mathrm{Ga}(\mathrm{L}), \mathrm{Gb}(\mathrm{L}), \mathrm{Gc}(\mathrm{L})\)
Ports associated with the gate terminals of the Converter block low-side switching devices. You can set the ports to either physical signal or electrical ports.

G
Vector output port associated with the multiplexed gate signals. Connect this port to the \(G\) port of the Converter block.
a, b, c
Electrical conserving ports associated with the individual phase voltages that connect to the high-side switching devices of the Converter block. These ports are visible only if you set the input ports of the Six-Pulse Gate Multiplexer block to electrical ports.

L
Electrical conserving port associated with the negative DC voltage common to each low-side switching device in the Converter block. These ports are visible only if you set the input ports of the Six-Pulse Gate Multiplexer block to electrical ports.

\section*{See Also}

Converter

\section*{Related Examples}
- "Switch Between Physical Signal and Electrical Ports"

\section*{Switch}

Three-phase single-throw switch

\section*{Library}

Switches \& Breakers


\section*{Description}

The Switch block models a three-phase single-throw switch that uses an external signal to connect each phase of port \(\sim 1\) with the corresponding phase of port \(\sim 2\) via internal resistance.

The table shows how the external signal vT controls the block behavior.
\begin{tabular}{|l|l|l|}
\hline Condition & Block Behavior & \begin{tabular}{l} 
Resistance Parameter \\
Used
\end{tabular} \\
\hline VT \(\leq\) Threshold & \begin{tabular}{l} 
The switch is open. Each phase in the \\
composite three-phase port \(\sim 1\) connects to the \\
corresponding phase in the port \(\sim 2\) via large \\
internal resistance.
\end{tabular} & Open conductance \\
\hline VT > Threshold & \begin{tabular}{l} 
The switch is closed. Each phase in the \\
composite three-phase port \(\sim 1\) connects to the \\
corresponding phase in the port \(\sim 2\) via small \\
internal resistance.
\end{tabular} & Closed resistance \\
\hline
\end{tabular}

\section*{Dialog Box and Parameters}

Block Parameters: Switch
Switch
The block represents a single-throw three-phase switch controlled by an external control signal vT. The switch common ports \(\sim 1\) connect to ports \(\sim 2\) when vT is above the threshold, and disconnect when vT is less than or equal to the threshold.

Right-click on the block and select Simscape block choices to access variant implementations of this block.
Settings


\section*{Closed resistance}

Resistance between ports \(\sim 1\) and \(\sim 2\) when the switch is closed. The default value is \(0.001 \Omega\).

\section*{Open conductance}

Conductance between ports \(\sim 1\) and \(\sim 2\) when the switch is open. The default value is 1e-6 \(\Omega^{-1}\).

\section*{Threshold}

Threshold voltage for the control port VT. When the voltage is above the threshold, the switch is closed. The default value is 0 V .

\section*{Ports}

The block has the following ports:
\[
\sim 1
\]

Expandable "three-phase port"
~2
Expandable "three-phase port"
vT
Scalar control port, which is either a physical signal or an electrical port.

\section*{See Also}

Single-Phase Switch | Single-Phase Two-Way Switch | Two-Way Switch

\section*{Related Examples}
- "Expand and Collapse Three-Phase Ports on a Block"
- "Switch Between Physical Signal and Electrical Ports"

\section*{Synchronous Machine Field Circuit (pu)}

Synchronous machine field circuit per-unit voltage supply and current measurement

\section*{Library}

Machines

\section*{Description}


The Synchronous Machine Field Circuit (pu) block applies specified voltage to, and measures current through, the field circuit of the synchronous machine that it is connected to. It includes an electrical reference. The physical signal input Efd_pu defines the voltage and the physical signal output Ifd_pu provides the current, both in per-unit.

The per-unit bases are the non-reciprocal per-unit system, Efd and Ifd, rather than the reciprocal per-unit system, efd and ifd.

The figure shows the schematic for the Synchronous Machine Field Circuit (pu) block.


\section*{Dialog Box and Parameters}

- "Main Tab" on page 1-206
- "Machine Parameters Tab" on page 1-207

\section*{Main Tab}

\section*{Rated apparent power}

Rated apparent power of the connected machine. The default value is 555 e 6 VA .

\section*{Rated electrical frequency}

Nominal electrical frequency at which rated apparent power of the connected machine is quoted. The default value is 60 Hz .
Specify field circuit input required to produce rated terminal voltage at no load by

Choose between Field circuit voltage and Field circuit current. The default value is Field circuit current.

\section*{Field circuit current}

This value is used to calculate the per-unit bases for the field circuit (non-reciprocal per-unit system). This parameter is visible only when Specify field circuit input required to produce rated terminal voltage at no load by is set to Field circuit current. The default value is 1300 A .

\section*{Field circuit voltage}

This value is used to calculate the per-unit bases for the field circuit (non-reciprocal per-unit system). This parameter is visible only when Specify field circuit input required to produce rated terminal voltage at no load by is set to Field circuit voltage. The default value is 92.95 V .

\section*{Machine Parameters Tab}

Specify parameterization by
Choose between Fundamental Parameters and Standard Parameters. The default value is Fundamental Parameters.

\section*{Stator d-axis mutual inductance (unsaturated), Ladu}

Unsaturated stator d-axis mutual inductance. This parameter is visible only when Specify parameterization by is set to Fundamental Parameters. The default value is 1.66 pu .

\section*{Rotor field circuit resistance, Rfd}

Rotor field circuit resistance. This parameter is visible only when Specify parameterization by is set to Fundamental Parameters. The default value is 0.0006 pu .

\section*{Stator leakage reactance, Xl}

Stator leakage reactance. This parameter is visible only when Specify parameterization by is set to Standard Parameters. The default value is 0.15 pu.
d-axis synchronous reactance, Xd
The d-axis synchronous reactance. This parameter is visible only when Specify parameterization by is set to Standard Parameters. The default value is 1.81 pu.
d-axis transient reactance, \(\mathrm{Xd}^{\prime}\)
The d-axis transient reactance. This parameter is visible only when Specify parameterization by is set to Standard Parameters. The default value is 0.3 pu.

\section*{Specify d-axis transient time constant by}

This parameter is visible only when Specify parameterization by is set to Standard Parameters. Choose between Open circuit value and Short circuit value. The default value is Open circuit value.
d-axis transient open circuit, Td0'
The d-axis transient open circuit time constant. This parameter is visible only when Specify d-axis transient time constant by is set to Open circuit value. The default value is 8 s .
d-axis transient short circuit, \(\mathbf{T d}^{\prime}\)
The d-axis transient short circuit time constant. This parameter is visible only when Specify d-axis transient time constant by is set to Short circuit value. The default value is 1.326 s .

\section*{Ports}

The block has the following ports:

\section*{Efd_pu}

Field voltage input, per-unit

\section*{Ifd_pu}

Field current output, per-unit

\section*{fd+}

Electrical conserving port corresponding to the field winding positive terminal fd-

Electrical conserving port corresponding to the field winding negative terminal

\section*{See Also}

Synchronous Machine Salient Pole (standard) | Synchronous Machine Salient Pole (fundamental) | Synchronous Machine Field Circuit (SI) | Synchronous Machine Round Rotor (standard) | Synchronous Machine Round Rotor (fundamental)

\section*{Related Examples}
- Three-Phase Synchronous Machine Control

\section*{Synchronous Machine Field Circuit (SI)}

Synchronous machine field circuit voltage supply and current measurement in SI units

\section*{Library}

Machines

\section*{Description}


The Synchronous Machine Field Circuit (SI) block applies specified voltage to, and measures current through, the field circuit of the synchronous machine that it is connected to. It includes an electrical reference. The physical signal input Efd defines the voltage, in Volts, and the physical signal output Ifd provides the current, in Amperes.

The figure shows the schematic for the Synchronous Machine Field Circuit (SI) block.


\section*{Dialog Box}

Block Parameters: Synchronous Machine Field Circuit (SI)
Synchronous Machine Field Circuit (SI)
This block applies the specified voltage and measures the current in the field circuit of the machine it is connected to. It includes a connection to electrical reference. The physical signal input, Efd, defines the field voltage, and the physical signal output, Ifd, outputs the measured field current.

The block has no parameters.

\section*{Ports}

The block has the following ports:

\section*{Efd}

Field voltage input, V

\section*{Ifd}

Field current output, A
fd+
Electrical conserving port corresponding to the field winding positive terminal fd-

Electrical conserving port corresponding to the field winding negative terminal

\section*{See Also}

Synchronous Machine Salient Pole (standard) | Synchronous Machine Salient Pole (fundamental) | Synchronous Machine Field Circuit (pu) | Synchronous Machine Round Rotor (standard) | Synchronous Machine Round Rotor (fundamental)

\section*{Synchronous Machine Measurement}

Per-unit measurement from synchronous machine

\section*{Library}

\author{
Machines
}

\section*{Description}


The Synchronous Machine Measurement block outputs a per-unit measurement associated with a connected Synchronous Machine Round Rotor or Synchronous Machine Salient Pole block. The input of the Synchronous Machine Measurement block connects to the pu output port of the synchronous machine block.

You set the Output parameter to a per-unit measurement associated with the synchronous machine. Based on the value you select, the Synchronous Machine Measurement block:
- Directly outputs the value of an element in the input signal vector
- Calculates the per-unit measurement by using values of elements in the input signal vector in mathematical expressions

The Synchronous Machine Measurement block outputs a per-unit measurement from the synchronous machine according to the output value expressions in the table. For example, when you set Output to Stator d-axis voltage, the block directly outputs the value of the pu_ed element in the input signal vector. However, when you set Output to Reactive power, the block calculates the value from the pu_ed, pu_eq, pu_id, and pu_iq elements.
\begin{tabular}{|l|l|}
\hline Output Parameter Setting & Output Value Expression \\
\hline Field voltage (field circuit base, Efd) & pu_fd_Efd \\
\hline Field current (field circuit base, Ifd) & pu_fd_Ifd \\
\hline Electrical torque & pu_torque \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Output Parameter Setting & Output Value Expression \\
\hline Rotor velocity & pu_velocity \\
\hline Stator d-axis voltage & pu_ed \\
\hline Stator q -axis voltage & pu_eq \\
\hline Stator zero-sequence voltage & pu_e0 \\
\hline Stator d-axis current & pu_id \\
\hline Stator q-axis current & pu_iq \\
\hline Stator zero-sequence current & pu_io \\
\hline Apparent power & \(\sqrt{p u_{-} P t^{2}+p u_{-} Q t^{2}}\) \\
\hline Real power & \[
\begin{aligned}
& \text { pu_Pt }=\left(p u \_e d * p u \_i d\right)+ \\
& \left(p u \_\right. \text {eq*pu_iq) + 2(pu_e0*pu_i0) }
\end{aligned}
\] \\
\hline Reactive power & \[
\begin{aligned}
& \text { pu_Qt = (pu_eq*pu_id) - } \\
& (\text { pu_ed*pu_iq) }
\end{aligned}
\] \\
\hline Terminal voltage & \(\sqrt{\left(p u_{-} e d^{2}+p u_{-} e q^{2}\right)}\) \\
\hline Terminal current & \(\sqrt{\left(p u_{-} i d^{2}+p u_{-} i q^{2}\right)}\) \\
\hline Power factor angle (rad) & ```
power_factor_angle = atan2(pu_Qt,
pu_Pt)
``` \\
\hline Power factor & cos(power_factor_angle) \\
\hline Load angle (rad) & ```
load_angle(rad) = atan2(pu_ed,
pu_eq)
``` \\
\hline
\end{tabular}

\section*{Dialog Box and Parameters}


\section*{Output}

Per-unit measurement from synchronous machine. The default value is Field voltage (field circuit base, Efd).

\section*{Ports}

The block has the following ports:
pu
Physical signal vector port associated with per-unit measurements from a connected synchronous machine. The vector elements are:
- pu_fd_Efd
- pu_fd_Ifd
- pu_torque
- pu_velocity
- pu_ed
- pu_eq
- pu_e0
- pu_id
- pu_iq
- pu_i0

0
Per-unit measurement output port.

\section*{See Also}

Synchronous Machine Round Rotor (fundamental) | Synchronous Machine Round Rotor (standard) | Synchronous Machine Salient Pole (fundamental) | Synchronous Machine Salient Pole (standard)

\section*{Synchronous Machine Round Rotor (fundamental)}

Round-rotor synchronous machine with fundamental parameterization

\section*{Library}

Machines / Synchronous Machine (Round Rotor)

\section*{Description}


The Synchronous Machine Round Rotor (fundamental) block models a round-rotor synchronous machine with parameterization using fundamental parameters.

\section*{Electrical Defining Equations}

The synchronous machine equations are expressed with respect to a rotating reference frame defined by the equation
\[
\theta_{e}(t)=N * \theta_{r}(t),
\]
where:
- \(\theta_{e}\) is the electrical angle.
- \(N\) is the number of pole pairs.
- \(\theta_{r}\) is the rotor angle.

Park's transformation maps the synchronous machine equations to the rotating reference frame with respect to the electrical angle. Park's transformation is defined by
\[
P_{s}=\frac{2}{3}\left[\begin{array}{ccc}
\cos \theta_{e} & \cos \left(\theta_{e}-\frac{2 \pi}{3}\right) & \cos \left(\theta_{e}+\frac{2 \pi}{3}\right) \\
-\sin \theta_{e} & -\sin \left(\theta_{e}-\frac{2 \pi}{3}\right) & -\sin \left(\theta_{e}-\frac{2 \pi}{3}\right) \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right] .
\]

Park's transformation is used to define the per-unit synchronous machine equations. The stator voltage equations are defined by
\(e_{d}=\frac{1}{\omega_{\text {base }}} \frac{\mathrm{d} \psi_{d}}{\mathrm{~d} t}-\Psi_{q} \omega_{r}-R_{a} i_{d}\),
\(e_{q}=\frac{1}{\omega_{\text {base }}} \frac{\mathrm{d} \psi_{q}}{\mathrm{~d} t}+\Psi_{d} \omega_{r}-R_{a} i_{q}\),
and
\(e_{0}=\frac{1}{\omega_{\text {base }}} \frac{d \Psi_{0}}{d t}-R_{a} i_{0}\),
where:
- \(e_{d}, e_{q}\), and \(e_{0}\) are the d-axis, q -axis, and zero-sequence stator voltages, defined by
\[
\left[\begin{array}{l}
e_{d} \\
e_{q} \\
e_{0}
\end{array}\right]=P_{s}\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right],
\]
where \(v_{a}, v_{b}\), and \(v_{c}\) are the stator voltages measured from port \(\sim\) to neutral port n .
- \(\omega_{\text {base }}\) is the per-unit base electrical speed.
- \(\psi_{d}, \psi_{q}\), and \(\psi_{0}\) are the d-axis, q -axis, and zero-sequence stator flux linkages.
- \(\omega_{r}\) is the per-unit rotor rotational speed.
- \(R_{a}\) is the stator resistance.
- \(i_{d}, i_{q}\) and \(i_{0}\) are the d-axis, \(q\)-axis, and zero-sequence stator currents, defined by
\[
\left[\begin{array}{l}
i_{d} \\
i_{q} \\
i_{0}
\end{array}\right]=P_{s}\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right],
\]
where \(i_{a}, i_{b}\), and \(i_{c}\) are the stator currents flowing from port \(\sim\) to port n .
The rotor voltage equations are defined by
\(e_{f d}=\frac{1}{\omega_{\text {base }}} \frac{d \Psi_{f d}}{d t}+R_{f d} i_{f d}\),
\(e_{1 d}=\frac{1}{\omega_{\text {base }}} \frac{d \Psi_{1 d}}{d t}+R_{1 d} i_{1 d}=0\),
\(e_{1 q}=\frac{1}{\omega_{\text {base }}} \frac{d \Psi_{1 q}}{d t}+R_{1 q} i_{1 q}=0\),
and
\[
e_{2 q}=\frac{1}{\omega_{\text {base }}} \frac{d \Psi_{2 q}}{d t}+R_{2 q} i_{2 q}=0
\]
where:
- \(e_{f d}\) is the field voltage.
- \(e_{1 d}, e_{1 q}\), and \(e_{2 q}\) are the voltages across the d-axis damper winding \(1, \mathrm{q}\)-axis damper winding 1 , and q -axis damper winding 2 . They are all equal to 0 .
- \(\psi_{f d}, \psi_{1 d}, \psi_{1 q}\), and \(\psi_{2 q}\) are the magnetic fluxes linking the field circuit, d-axis damper winding 1 , q -axis damper winding 1 , and q -axis damper winding 2 .
- \(R_{f d}, R_{1 d}, R_{1 q}\), and \(R_{2 q}\) are the resistances of rotor field circuit, d-axis damper winding 1 , q -axis damper winding 1 , and q -axis damper winding 2 .
- \(i_{f d}, i_{1 d}, i_{1 q}\), and \(i_{2 q}\) are the currents flowing in the field circuit, d-axis damper winding \(1, \mathrm{q}\)-axis damper winding 1 , and q -axis damper winding 2 .

The saturation equations are defined by
\[
\begin{aligned}
& \psi_{a t}=\sqrt{\psi_{d}^{2}+\psi_{q}^{2}}, \\
& K_{s}=1 \text { (If saturation is disabled), } \\
& K_{s}=f\left(\psi_{a t}\right) \text { (If saturation is enabled), } \\
& L_{a d}=K_{s} * L_{a d u}, \\
& \text { and } \\
& L_{a q}=K_{s} * L_{a q u},
\end{aligned}
\]
where:
- \(\psi_{a t}\) is the air-gap flux linkage.
- \(K_{s}\) is the saturation factor.
- \(L_{a d u}\) is the unsaturated mutual inductance of the stator d-axis.
- \(L_{a d}\) is the mutual inductance of the stator d-axis.
- \(L_{a q u}\) is the unsaturated mutual inductance of the stator \(q\)-axis.
- \(L_{a q}\) is the mutual inductance of the stator q -axis.

The saturation factor function, f , is calculated from the per-unit open-circuit lookup table as:
\(L_{a d}=\frac{d \psi_{a t}}{d i_{f d}}\),
\(V_{a g}=g\left(i_{f d}\right)\),
and
\(L_{a d}=\frac{d g\left(i_{f d}\right)}{d i_{f d}}=\frac{d V_{a g}}{d i_{f d}}\),
where:
- \(V_{a g}\) is the per-unit air-gap voltage.

In per-unit,
\(K_{s}=\frac{L_{a d}}{L_{a d u}}\),
and
\(\psi_{a t}=V_{a g}\)
can be rearranged to
\(K_{s}=f\left(\psi_{a t}\right)\).
The stator flux linkage equations are defined by
\(\Psi_{d}=-\left(L_{a d}+L_{i}\right) i_{d}+L_{a d} i_{f d}+L_{a d} i_{1 d}\),
\(\Psi q=-\left(L_{a q}+L_{i}\right) i_{q}+L_{a q} i_{1 q}+L_{a q} i_{2 q}\),
and
\[
\Psi_{0}=-L_{0} i_{0}
\]
where:
- \(L_{l}\) is the stator leakage inductance.
- \(L_{a d}\) and \(L_{a q}\) are the mutual inductances of the stator d-axis and q-axis.

The rotor flux linkage equations are defined by
\(\psi_{f d}=L_{f f d} i_{f d}+L_{f 1 d} i_{1 d}-L_{a d} i_{d}\),
\(\psi_{1 d}=L_{f 1 d} i_{f d}+L_{11 d} i_{1 d}-L_{a d} i_{d}\),
\[
\psi_{1 q}=L_{11 q} i_{1 q}+L_{a q} i_{2 q}-L_{a q} i_{q}
\]
and
\(\psi_{2 q}=L_{a q} i_{1 q}+L_{22 q} i_{2 q}-L_{a q} i_{q}\),
where:
- \(L_{f f d}, L_{11 d}, L_{11 q}\), and \(L_{22 q}\) are the self-inductances of the rotor field circuit, d-axis damper winding 1 , q -axis damper winding 1 and q -axis damper winding 2. \(L_{f l d}\) is the rotor field circuit and d-axis damper winding 1 mutual inductance. They are defined by the following equations.
- \(L_{f f d}=L_{a d}+L_{f d}\)
- \(L_{f 1 d}=L_{f f d}-L_{f d}\)
- \(L_{11 d}=L_{f 1 d}+L_{1 d}\)
- \(L_{11 q}=L_{a q}+L_{1 q}\)
- \(L_{22 q}=L_{a q}+L_{2 q}\)

These equations assume that per-unit mutual inductance \(L_{12 q}=L_{a q}\), i.e., the stator and rotor currents in the \(q\)-axis all link a single mutual flux represented by \(L_{a q}\).

The rotor torque is defined by
\(T_{e}=\Psi_{d} i_{q}-\Psi_{q} i_{d}\).

\section*{Display Options}

For synchronous machine blocks, you can perform display actions using the Power Systems menu on the block context menu.

Right-click the block. From the context menu, select one of the following from the Power Systems > Synchronous Machine menu:
- Display Base Values displays the machine per-unit base values at the MATLAB command prompt.
- Display Associated Base Values displays associated per-unit base values at the MATLAB command prompt.
- Associated Initial Conditions displays associated initial conditions at the MATLAB command prompt.
- Plot Open-Circuit Saturation (pu) plots air-gap voltage, \(V_{a g}\), versus field current, \(i_{f d}\), (both measured in per-unit) in a MATLAB figure window. The plot contains three traces:
- Unsaturated: Stator d-axis mutual inductance (unsaturated), Ladu you specify
- Saturated: Per-unit open-circuit lookup table (Vag versus ifd) you specify
- Derived: Open-circuit lookup table (per-unit) derived from the Per-unit opencircuit lookup table (Vag versus ifd) you specify. This data is used to calculate the saturation factor, \(K_{s}\), versus magnetic flux linkage, \(\psi_{a t}\), characteristic.
- Plot Saturation Factor (pu) plots saturation factor, \(K_{s}\), versus magnetic flux linkage, \(\psi_{a t}\), (both measured in per-unit) in a MATLAB figure window using the present machine parameters. This is derived from parameters you specify:
- Stator d-axis mutual inductance (unsaturated), Ladu
- Per-unit field current saturation data, ifd
- Per-unit air-gap voltage saturation data, Vag

\section*{Dialog Box and Parameters}

- "Main Tab" on page 1-223
- "Impedances Tab" on page 1-223
- "Saturation Tab" on page 1-224
- "Initial Conditions Tab" on page 1-225

\section*{Main Tab}

\section*{Rated apparent power}

Rated apparent power. The default value is 555 e 6 VA.

\section*{Rated voltage}

RMS rated line-line voltage. The default value is 24 e 3 V .

\section*{Rated electrical frequency}

Nominal electrical frequency at which rated apparent power is quoted. The default value is 60 Hz .

\section*{Number of pole pairs}

Number of machine pole pairs. The default value is 1.

\section*{Specify field circuit input required to produce rated terminal voltage at no} load by

Select between
- Field circuit voltage
- Field circuit current

The default value is Field circuit current.

\section*{Field circuit current}

This parameter is visible only when Specify field circuit input required to produce rated terminal voltage at no load by is set to Field circuit current. The default value is 1300 A .

\section*{Field circuit voltage}

This parameter is visible only when Specify field circuit input required to produce rated terminal voltage at no load by is set to Field circuit voltage. The default value is 92.95 V .

\section*{Impedances Tab}

\section*{Stator d-axis mutual inductance (unsaturated), Ladu}

Unsaturated stator d-axis mutual inductance. If Magnetic saturation representation is set to None, this is equivalent to the stator d-axis mutual inductance. The default value is 1.66 pu .

Stator q-axis mutual inductance (unsaturated), Laqu

Unsaturated stator \(q\)-axis mutual inductance. If Magnetic saturation representation is set to None, this is equivalent to the stator \(q\)-axis mutual inductance. The default value is 1.61 pu .

\section*{Stator zero-sequence inductance, L 0}

Stator zero-sequence inductance. The default value is 0 pu .

\section*{Stator leakage inductance, Ll}

Stator leakage inductance. The default value is 0.15 pu .

\section*{Stator resistance, Ra}

Stator resistance. The default value is 0.003 pu.

\section*{Rotor field circuit inductance, Lfd}

Rotor field circuit inductance. The default value is 0.165 pu .

\section*{Rotor field circuit resistance, Rfd}

Rotor field circuit resistance. The default value is 0.0006 pu .

\section*{Rotor d-axis damper winding 1 inductance, L1d}

Rotor d -axis damper winding 1 inductance. The default value is 0.1713 pu .

\section*{Rotor d-axis damper winding 1 resistance, R1d}

Rotor d-axis damper winding 1 resistance. The default value is 0.0284 pu .

\section*{Rotor \(q\)-axis damper winding 1 inductance, L1q}

Rotor q -axis damper winding 1 inductance. The default value is 0.7252 pu .

\section*{Rotor \(\mathbf{q}\)-axis damper winding 1 resistance, R1q}

Rotor q -axis damper winding 1 resistance. The default value is 0.00619 pu .

\section*{Rotor \(\mathbf{q}\)-axis damper winding 2 inductance, L2q}

Rotor q -axis damper winding 2 inductance. The default value is 0.125 pu .
Rotor \(\mathbf{q}\)-axis damper winding 2 resistance, R2q
Rotor q -axis damper winding 2 resistance. The default value is 0.02368 pu .

\section*{Saturation Tab}

\section*{Magnetic saturation representation}

Block magnetic saturation representation. Options are:
- None
- Per-unit open-circuit lookup table (Vag versus ifd)

The default value is None.

\section*{Per-unit field current saturation data, ifd}

The field current, \(i_{f d}\), data populates the air-gap voltage, \(V_{a g}\), versus field current, \(i_{f d}\), lookup table. This parameter is only visible when you set Magnetic saturation representation to Per-unit open-circuit lookup table (Vag versus ifd). This parameter must contain a vector with at least five elements. The default value is \([0.00,0.48,0.76,1.38,1.79]\) pu.

\section*{Per-unit air-gap voltage saturation data, Vag}

The air-gap voltage, \(V_{a g}\), data populates the air-gap voltage, \(V_{a g}\), versus field current, \(i_{f d}\), lookup table. This parameter is only visible when you set Magnetic saturation representation to Per-unit open-circuit lookup table (Vag versus ifd). This parameter must contain a vector with at least five elements. The default value is \([0.00,0.80,1.08,1.31,1.40]\) pu.

\section*{Initial Conditions Tab}

Specify initialization by
Options include:
- Electrical power and voltage output
- Mechanical and magnetic states

The default value is Electrical power and voltage output.

\section*{Terminal voltage magnitude}

Initial RMS line-line voltage. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is 24 e 3 V .

\section*{Terminal voltage angle}

Initial voltage angle. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is 0 deg .

\section*{Terminal active power}

Initial active power. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is 500 e 6 VA .

\section*{Terminal reactive power}

Initial reactive power. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is 0 VA .

\section*{Initial rotor angle}

Initial rotor angle. During steady-state operation, set this parameter to the sum of the load angle and required terminal voltage offset. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 deg.

\section*{Initial stator d-axis magnetic flux linkage}

Stator d-axis initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu.

\section*{Initial stator \(q\)-axis magnetic flux linkage}

Stator q-axis initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu.

\section*{Initial stator zero-sequence magnetic flux linkage}

Zero-sequence initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu .

\section*{Initial field circuit magnetic flux linkage}

Field circuit initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu.

\section*{Initial d-axis damper winding 1 magnetic flux linkage}
d-axis damper winding 1 initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu .

\section*{Initial \(\mathbf{q}\)-axis damper winding 1 magnetic flux linkage}

The \(q\)-axis damper winding 1 initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu .

Initial \(q\)-axis damper winding 2 magnetic flux linkage

The \(q\)-axis damper winding 2 initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu .

\section*{Ports}

The block has the following ports:
fd+
Electrical conserving port corresponding to the field winding positive terminal fd-

Electrical conserving port corresponding to the field winding negative terminal R

Mechanical rotational conserving port associated with the machine rotor
C
Mechanical rotational conserving port associated with the machine case pu

Physical signal vector port associated with the machine per-unit measurements. The vector elements are:
- pu_fd_Efd
- pu_fd_Ifd
- pu_torque
- pu_velocity
- pu_ed
- pu_ed
- pu_e0
- pu_id
- pu_iq
- pu_i0

Expandable "three-phase port" associated with the stator windings

\section*{n}

Electrical conserving port associated with the neutral point of the wye winding configuration

\section*{References}
[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
[2] Lyshevski, S. E. Electromechanical Systems, Electric Machines and Applied Mechatronics. Boca Raton, FL: CRC Press, 1999.

\section*{See Also}

Synchronous Machine Measurement | Synchronous Machine Round Rotor (Standard) | Synchronous Machine Salient Pole (Fundamental) | Synchronous Machine Salient Pole (Standard)

\section*{Related Examples}
- "Expand and Collapse Three-Phase Ports on a Block"
- Three-Phase Synchronous Machine Control

\section*{Synchronous Machine Round Rotor (standard)}

Round-rotor synchronous machine with standard parameterization

\section*{Library}

Machines / Synchronous Machine (Round Rotor)

\section*{Description}


The Synchronous Machine Round Rotor (standard) block models a round-rotor synchronous machine with parameterization using standard parameters.

\section*{Electrical Defining Equations}

The synchronous machine equations are expressed with respect to a rotating reference frame defined by the equation
\[
\theta_{e}(t)=N * \theta_{r}(t),
\]

\section*{where:}
- \(\theta_{e}\) is the electrical angle.
- \(N\) is the number of pole pairs.
- \(\theta_{r}\) is the rotor angle.

Park's transformation maps the synchronous machine equations to the rotating reference frame with respect to the electrical angle. Park's transformation is defined by
\[
P_{s}=\frac{2}{3}\left[\begin{array}{ccc}
\cos \theta_{e} & \cos \left(\theta_{e}-\frac{2 \pi}{3}\right) & \cos \left(\theta_{e}+\frac{2 \pi}{3}\right) \\
-\sin \theta_{e} & -\sin \left(\theta_{e}-\frac{2 \pi}{3}\right) & -\sin \left(\theta_{e}-\frac{2 \pi}{3}\right) \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right] .
\]

Park's transformation is used to define the per-unit synchronous machine equations. The stator voltage equations are defined by
\(e_{d}=\frac{1}{\omega_{\text {base }}} \frac{\mathrm{d} \psi_{d}}{\mathrm{~d} t}-\Psi_{q} \omega_{r}-R_{a} i_{d}\),
\(e_{q}=\frac{1}{\omega_{\text {base }}} \frac{\mathrm{d} \psi_{q}}{\mathrm{~d} t}+\Psi_{d} \omega_{r}-R_{a} i_{q}\),
and
\(e_{0}=\frac{1}{\omega_{\text {base }}} \frac{d \Psi_{0}}{d t}-R_{a} i_{0}\),
where:
- \(e_{d}, e_{q}\), and \(e_{0}\) are the d-axis, q -axis, and zero-sequence stator voltages, defined by
\[
\left[\begin{array}{l}
e_{d} \\
e_{q} \\
e_{0}
\end{array}\right]=P_{s}\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right],
\]
where \(v_{a}, v_{b}\), and \(v_{c}\) are the stator voltages measured from port \(\sim\) to neutral port n .
- \(\omega_{\text {base }}\) is the per-unit base electrical speed.
- \(\psi_{d}, \psi_{q}\), and \(\psi_{0}\) are the d-axis, q -axis, and zero-sequence stator flux linkages.
- \(\omega_{r}\) is the per-unit rotor rotational speed.
- \(R_{a}\) is the stator resistance.
- \(i_{d}, i_{q}\) and \(i_{0}\) are the d-axis, \(q\)-axis, and zero-sequence stator currents, defined by
\[
\left[\begin{array}{l}
i_{d} \\
i_{q} \\
i_{0}
\end{array}\right]=P_{s}\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right],
\]
where \(i_{a}, i_{b}\), and \(i_{c}\) are the stator currents flowing from port \(\sim\) to port n .
The rotor voltage equations are defined by
\(e_{f d}=\frac{1}{\omega_{b a s e}} \frac{d \Psi_{f d}}{d t}+R_{f d} i_{f d}\),
\(e_{1 d}=\frac{1}{\omega_{\text {base }}} \frac{d \Psi_{1 d}}{d t}+R_{1 d} i_{1 d}=0\),
\(e_{1 q}=\frac{1}{\omega_{\text {base }}} \frac{d \Psi_{1 q}}{d t}+R_{1 q} i_{1 q}=0\),
and
\[
e_{2 q}=\frac{1}{\omega_{\text {base }}} \frac{d \Psi_{2 q}}{d t}+R_{2 q} i_{2 q}=0
\]
where:
- \(e_{f d}\) is the field voltage.
- \(e_{1 d}, e_{1 q}\), and \(e_{2 q}\) are the voltages across the d-axis damper winding \(1, \mathrm{q}\)-axis damper winding 1 , and q -axis damper winding 2 . They are all equal to 0 .
- \(\psi_{f d}, \psi_{l d}, \psi_{l q}\), and \(\psi_{2 q}\) are the magnetic fluxes linking the field circuit, d-axis damper winding 1 , q -axis damper winding 1 , and q -axis damper winding 2 .
- \(R_{f d}, R_{1 d}, R_{1 q}\), and \(R_{2 q}\) are the resistances of rotor field circuit, d-axis damper winding 1 , q -axis damper winding 1 , and q -axis damper winding 2 .
- \(i_{f d}, i_{1 d}, i_{1 q}\), and \(i_{2 q}\) are the currents flowing in the field circuit, d-axis damper winding \(1, \mathrm{q}\)-axis damper winding 1 , and q -axis damper winding 2 .

The saturation equations are defined by
\(\psi_{a t}=\sqrt{\psi_{d}^{2}+\psi_{q}^{2}}\),
\(K_{s}=1\) (If saturation is disabled),
\(K_{s}=f\left(\psi_{a t}\right)\) (If saturation is enabled),
\(L_{a d}=K_{s} * L_{a d u}\),
and
\(L_{a q}=K_{s} * L_{\text {aqu }}\),
where:
- \(\psi_{a t}\) is the air-gap flux linkage.
- \(K_{s}\) is the saturation factor.
- \(L_{a d u}\) is the unsaturated mutual inductance of the stator d-axis.
- \(L_{a d}\) is the mutual inductance of the stator d-axis.
- \(L_{a q u}\) is the unsaturated mutual inductance of the stator q-axis.
- \(L_{a q}\) is the mutual inductance of the stator q-axis.

The saturation factor function, f , is calculated from the per-unit open-circuit lookup table as:
\(L_{a d}=\frac{d \psi_{a t}}{d i_{f d}}\),
\(V_{a g}=g\left(i_{f d}\right)\),
and
\(L_{a d}=\frac{d g\left(i_{f d}\right)}{d i_{f d}}=\frac{d V_{a g}}{d i_{f d}}\),
where:
- \(V_{a g}\) is the per-unit air-gap voltage.

In per-unit,
\(K_{s}=\frac{L_{a d}}{L_{a d u}}\),
and
\(\psi_{a t}=V_{a g}\)
can be rearranged to
\(K_{s}=f\left(\psi_{a t}\right)\).
The stator flux linkage equations are defined by
\(\Psi_{d}=-\left(L_{a d}+L_{i}\right) i_{d}+L_{a d} i_{f d}+L_{a d} i_{1 d}\),
\(\Psi q=-\left(L_{a q}+L_{i}\right) i_{q}+L_{a q} i_{1 q}+L_{a q} i_{2 q}\),
and
\(\Psi_{0}=-L_{0} i_{0}\),
where:
- \(L_{l}\) is the stator leakage inductance.
- \(L_{a d}\) and \(L_{a q}\) are the mutual inductances of the stator d-axis and q-axis.

The rotor flux linkage equations are defined by
\(\psi_{f d}=L_{f f d} i_{f d}+L_{f 1 d} i_{1 d}-L_{a d} i_{d}\),
\(\psi_{1 d}=L_{f 1 d} i_{f d}+L_{1 d d} i_{1 d}-L_{a d} i_{d}\),
\(\psi_{1 q}=L_{11 q} i_{1 q}+L_{a q} i_{2 q}-L_{a q} i_{q}\),
and
\(\psi_{2 q}=L_{a q} i_{1 q}+L_{22 q} i_{2 q}-L_{a q} i_{q}\),
where:
- \(L_{f f d}, L_{11 d}, L_{11 q}\), and \(L_{22 q}\) are the self-inductances of the rotor field circuit, d-axis damper winding \(1, \mathrm{q}\)-axis damper winding 1 , and q -axis damper winding \(2 . L_{f l d}\) is the rotor field circuit and \(d\)-axis damper winding 1 mutual inductance. They are defined by the following equations.
\[
\begin{aligned}
& L_{f f d}=L_{a d}+L_{f d} \\
& L_{f 1 d}=L_{f f d}-L_{f d} \\
& L_{11 d}=L_{f 1 d}+L_{1 d} \\
& L_{11 q}=L_{a q}+L_{1 q} \\
& L_{22 q}=L_{a q}+L_{2 q}
\end{aligned}
\]

These equations assume that per-unit mutual inductance \(L_{12 q}=L_{a q}\), i.e., the stator and rotor currents in the \(q\)-axis all link a single mutual flux represented by \(L_{a q}\).

The rotor torque is defined by
\(T_{e}=\Psi_{d} i_{q}-\Psi_{q} i_{d}\).
These defining equations do not describe the time constants you can set in the dialog box. To see their relationship with the equation coefficients, see [1].

\section*{Display Options}

For synchronous machine blocks, you can perform display actions using the Power Systems menu on the block context menu.

Right-click the block. From the context menu, select one of the following from the Power Systems > Synchronous Machine menu:
- Display Base Values displays the machine per-unit base values at the MATLAB command prompt.
- Display Associated Base Values displays associated per-unit base values at the MATLAB command prompt.
- Associated Initial Conditions displays associated initial conditions at the MATLAB command prompt.
- Plot Open-Circuit Saturation (pu) plots air-gap voltage, \(V_{a g}\), versus field current, \(i_{f d}\), (both measured in per-unit) in a MATLAB figure window. The plot contains three traces:
- Unsaturated: Stator d-axis mutual inductance (unsaturated), Ladu you specify
- Saturated: Per-unit open-circuit lookup table (Vag versus ifd) you specify
- Derived: Open-circuit lookup table (per-unit) derived from the Per-unit opencircuit lookup table (Vag versus ifd) you specify. This data is used to calculate the saturation factor, \(K_{s}\), versus magnetic flux linkage, \(\psi_{a t}\), characteristic.
- Plot Saturation Factor (pu) plots saturation factor, \(K_{s}\), versus magnetic flux linkage, \(\psi_{a t}\), (both measured in per-unit) in a MATLAB figure window using the present machine parameters. This is derived from parameters you specify:
- Stator d-axis mutual inductance (unsaturated), Ladu
- Per-unit field current saturation data, ifd
- Per-unit air-gap voltage saturation data, Vag

\section*{Dialog Box and Parameters}

Block Parameters: Synchronous Machine Round Rotor (standard)

\section*{\(x\)}

Synchronous Machine Round Rotor (standard)
Synchronous machine with a round rotor parameterized using standard per-unit parameters. For simulation, transient and subtransient parameter values are converted to fundamental per-unit parameters based on classical definitions.

Right-click on the block and select Simscape block choices to access variant implementations of this block.
Settings
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Main & Impedances & Time Constants & Saturation & Initial Conditions & & \\
\hline \multicolumn{3}{|l|}{Rated apparent power:} & \multicolumn{2}{|c|}{555e6} & V*A & \(\checkmark\) \\
\hline \multicolumn{5}{|l|}{Rated voltage: 24 e 3} & V & \(\checkmark\) \\
\hline \multicolumn{5}{|l|}{Rated electrical frequency: 60} & Hz & \(\checkmark\) \\
\hline \multicolumn{7}{|l|}{Number of pole pairs: 1} \\
\hline \multicolumn{7}{|l|}{Specify field circuit input required to produce rated terminal voltage} \\
\hline \multicolumn{5}{|l|}{Field circuit current: 1300} & A & - \\
\hline
\end{tabular}
- "Main Tab" on page 1-236
- "Impedances Tab" on page 1-237
- "Time Constants Tab" on page 1-238
- "Saturation Tab" on page 1-239
- "Initial Conditions Tab" on page 1-240

\section*{Main Tab}

\section*{Rated apparent power}

Rated apparent power. The default value is 555 e 6 VA .

\section*{Rated voltage}

RMS rated line-line voltage. The default value is 24 e 3 V .

\section*{Rated electrical frequency}

Nominal electrical frequency at which rated apparent power is quoted. The default value is 60 Hz .

\section*{Number of pole pairs}

Number of machine pole pairs. The default value is 1.
Specify field circuit input required to produce rated terminal voltage at no load by

Choose between Field circuit voltage and Field circuit current. The default value is Field circuit current.

\section*{Field circuit current}

This parameter is visible only when Specify field circuit input required to produce rated terminal voltage at no load by is set to Field circuit current. The default value is 1300 A .

\section*{Field circuit voltage}

This parameter is visible only when Specify field circuit input required to produce rated terminal voltage at no load by is set to Field circuit voltage. The default value is 92.95 V .

\section*{Impedances Tab}

\section*{Stator resistance, Ra}

Stator resistance. The default value is 0.003 pu.

\section*{Stator leakage reactance, Xl}

Stator leakage reactance. The default value is 0.15 pu .

\section*{d-axis synchronous reactance, Xd}

The d-axis synchronous reactance. The default value is 1.81 pu .

\section*{\(q\)-axis synchronous reactance, \(\mathbf{X q}\)}

The q -axis synchronous reactance. The default value is 1.76 pu .
zero-sequence reactance, X 0
The zero-sequence reactance. The default value is 0 pu .
d-axis transient reactance, \(\mathrm{Xd}^{\prime}\)

The d-axis transient reactance. The default value is 0.3 pu . \(\mathbf{q}\)-axis transient reactance, \(\mathrm{Xq}^{\prime}\)

The q -axis transient reactance. The default value is 0 pu .
d-axis subtransient reactance, \(\mathrm{Xd}^{\prime \prime}\)
The d-axis subtransient reactance. The default value is 0.23 pu . \(\mathbf{q}\)-axis subtransient reactance, \(\mathrm{Xq"}\)

The q -axis subtransient reactance. The default value is 0.25 pu .

\section*{Time Constants Tab}

\section*{Specify d-axis transient time constant}

Select between Open circuit value and Short circuit value. The default value is Open circuit value.
d-axis transient open circuit, Td0'
The d-axis transient open circuit time constant. This parameter is visible only when Specify d-axis transient time constant is set to Open circuit value. The default value is 8 s .
d-axis transient short circuit, \(\mathbf{T d}^{\prime}\)
The d-axis transient short circuit time constant. This parameter is visible only when Specify d-axis transient time constant is set to Short circuit value. The default value is 1.326 s .

\section*{Specify d-axis subtransient time constant}

Select between Open circuit value and Short circuit value. The default value is Open circuit value.
d-axis subtransient open circuit, Td0"
The d-axis subtransient open circuit time constant. This parameter is visible only when Specify d-axis subtransient time constant is set to Open circuit value. The default value is 0.03 s .
d-axis subtransient short circuit, Td"
The d-axis subtransient short circuit time constant. This parameter is visible only when Specify d-axis subtransient time constant is set to Short circuit value. The default value is 0.023 s .
Specify \(q\)-axis transient time constant
Select between Open circuit value and Short circuit value. The default value is Open circuit value.
q-axis transient open circuit, Tq0'
The \(q\)-axis transient open circuit time constant. This parameter is visible only when Specify q-axis transient time constant is set to Open circuit value. The default value is 1 s .
\(\mathbf{q}\)-axis transient short circuit, \(\mathbf{T q}^{\prime}\)
The \(q\)-axis transient short circuit time constant. This parameter is visible only when Specify q-axis transient time constant is set to Short circuit value. The default value is 0.3693 s .

\section*{Specify \(q\)-axis subtransient time constant}

Select between Open circuit value and Short circuit value. The default value is Open circuit value.

\section*{q-axis subtransient open circuit, Tq0"}

The \(q\)-axis subtransient open circuit time constant. This parameter is visible only when Specify \(q\)-axis subtransient time constant is set to Open circuit value. The default value is 0.07 s .
q-axis subtransient short circuit, Tq"
The \(q\)-axis subtransient short circuit time constant. This parameter is visible only when Specify q-axis subtransient time constant is set to Short circuit value. The default value is 0.0269 s .

\section*{Saturation Tab}

\section*{Magnetic saturation representation}

Block magnetic saturation representation. Options are:
- None
- Per-unit open-circuit lookup table (Vag versus ifd)

The default value is None.
Per-unit field current saturation data, ifd
The field current, \(i_{f d}\), data populates the air-gap voltage, \(V_{a g}\), versus field current, \(i_{f d}\), lookup table. This parameter is only visible when you set Magnetic saturation representation to Per-unit open-circuit lookup table (Vag versus ifd). This parameter must contain a vector with at least five elements. The default value is \([0.00,0.48,0.76,1.38,1.79]\) pu.
Per-unit air-gap voltage saturation data, Vag

The air-gap voltage, \(V_{a g}\), data populates the air-gap voltage, \(V_{a g}\), versus field current, \(i_{f d}\), lookup table. This parameter is only visible when you set Magnetic saturation representation to Per-unit open-circuit lookup table (Vag versus ifd). This parameter must contain a vector with at least five elements. The default value is \([0.00,0.80,1.08,1.31,1.40] \mathrm{pu}\).

\section*{Initial Conditions Tab}

Specify initialization by
Options include:
- Electrical power and voltage output
- Mechanical and magnetic states

The default value is Electrical power and voltage output.

\section*{Terminal voltage magnitude}

Initial RMS line-line voltage. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is 24 e 3 V .

\section*{Terminal voltage angle}

Initial voltage angle. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is 0 deg .

\section*{Terminal active power}

Initial active power. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is 500 e 6 VA .

\section*{Terminal reactive power}

Initial reactive power. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is 0 VA.

\section*{Initial rotor angle}

Initial rotor angle. During steady-state operation, set this parameter to the sum of the load angle and required terminal voltage offset. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 deg.

\section*{Initial stator d-axis magnetic flux linkage}

Stator d-axis initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu.

\section*{Initial stator q-axis magnetic flux linkage}

Stator q-axis initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu.

\section*{Initial stator zero-sequence magnetic flux linkage}

Zero-sequence initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu .

\section*{Initial field circuit magnetic flux linkage}

Field circuit initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu.

\section*{Initial d-axis damper winding 1 magnetic flux linkage}
\(d\)-axis damper winding 1 initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu .

\section*{Initial q-axis damper winding 1 magnetic flux linkage}

The \(q\)-axis damper winding 1 initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu .

\section*{Initial q-axis damper winding 2 magnetic flux linkage}

The \(q\)-axis damper winding 2 initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu .

\section*{Ports}

The block has the following ports:
fd+

Electrical conserving port corresponding to the field winding positive terminal fd-

Electrical conserving port corresponding to the field winding negative terminal R

Mechanical rotational conserving port associated with the machine rotor C

Mechanical rotational conserving port associated with the machine case pu

Physical signal vector port associated with the machine per-unit measurements. The vector elements are:
- pu_fd_Efd
- pu_fd_Ifd
- pu_torque
- pu_velocity
- pu_ed
- pu_ed
- pu_e0
- pu_id
- pu_iq
- pu_i0

Expandable "three-phase port" associated with the stator windings n

Electrical conserving port associated with the neutral point of the wye winding configuration

\section*{References}
[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
[2] Lyshevski, S. E. Electromechanical Systems, Electric Machines and Applied Mechatronics. Boca Raton, FL: CRC Press, 1999.

\section*{See Also}

Synchronous Machine Measurement | Synchronous Machine Round Rotor (Fundamental) | Synchronous Machine Salient Pole (Fundamental) | Synchronous Machine Salient Pole (Standard)

\section*{Related Examples}
- "Expand and Collapse Three-Phase Ports on a Block"
- Three-Phase Synchronous Machine Control

\section*{Synchronous Machine Salient Pole (fundamental)}

Salient-pole synchronous machine with fundamental parameterization

\section*{Library}

Machines / Synchronous Machine (Salient Pole)

\section*{Description}


The Synchronous Machine Salient Pole (fundamental) block models a salient-pole synchronous machine with parameterization using fundamental parameters.

\section*{Electrical Defining Equations}

The synchronous machine equations are expressed with respect to a rotating reference frame defined by the equation
\[
\theta_{e}(t)=N * \theta_{r}(t),
\]

\section*{where:}
- \(\theta_{e}\) is the electrical angle.
- \(N\) is the number of pole pairs.
- \(\theta_{r}\) is the rotor angle.

Park's transformation maps the synchronous machine equations to the rotating reference frame with respect to the electrical angle. Park's transformation is defined by
\(P_{s}=\frac{2}{3}\left[\begin{array}{ccc}\cos \theta_{e} & \cos \left(\theta_{e}-\frac{2 \pi}{3}\right) & \cos \left(\theta_{e}+\frac{2 \pi}{3}\right) \\ -\sin \theta_{e} & -\sin \left(\theta_{e}-\frac{2 \pi}{3}\right) & -\sin \left(\theta_{e}-\frac{2 \pi}{3}\right) \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2}\end{array}\right]\).
Park's transformation is used to define the per-unit synchronous machine equations. The stator voltage equations are defined by
\(e_{d}=\frac{1}{\omega_{\text {base }}} \frac{\mathrm{d} \psi_{d}}{\mathrm{~d} t}-\Psi_{q} \omega_{r}-R_{a} i_{d}\),
\(e_{q}=\frac{1}{\omega_{\text {base }}} \frac{\mathrm{d} \psi_{q}}{\mathrm{~d} t}+\Psi_{d} \omega_{r}-R_{a} i_{q}\),
and
\(e_{0}=\frac{1}{\omega_{\text {base }}} \frac{d \Psi_{0}}{d t}-R_{a} i_{0}\),
where:
- \(e_{d}, e_{q}\), and \(e_{0}\) are the d-axis, q -axis, and zero-sequence stator voltages, defined by
\[
\left[\begin{array}{l}
e_{d} \\
e_{q} \\
e_{0}
\end{array}\right]=P_{s}\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right],
\]
where \(v_{a}, v_{b}\), and \(v_{c}\) are the stator voltages measured from port \(\sim\) to neutral port n .
- \(\omega_{\text {base }}\) is the per-unit base electrical speed.
- \(\psi_{d}, \psi_{q}\), and \(\psi_{0}\) are the d-axis, \(q\)-axis, and zero-sequence stator flux linkages.
- \(\omega_{r}\) is the per-unit rotor rotational speed.
- \(R_{a}\) is the stator resistance.
- \(i_{d}, i_{q}\) and \(i_{0}\) are the d-axis, \(q\)-axis, and zero-sequence stator currents, defined by
\[
\left[\begin{array}{l}
i_{d} \\
i_{q} \\
i_{0}
\end{array}\right]=P_{s}\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right],
\]
where \(i_{a}, i_{b}\), and \(i_{c}\) are the stator currents flowing from port \(\sim\) to port n.
The rotor voltage equations are defined by
\(e_{f d}=\frac{1}{\omega_{\text {base }}} \frac{d \Psi_{f d}}{d t}+R_{f d} i_{f d}\),
\(e_{1 d}=\frac{1}{\omega_{\text {base }}} \frac{d \Psi_{1 d}}{d t}+R_{1 d} i_{1 d}=0\),
and
\(e_{1 q}=\frac{1}{\omega_{\text {base }}} \frac{d \Psi_{1 q}}{d t}+R_{1 q} i_{1 q}=0\),
where:
- \(e_{f d}\) is the field voltage.
- \(e_{1 d}\), and \(e_{1 q}\) are the voltages across the d-axis damper winding 1 and \(q\)-axis damper winding 1 . They are equal to 0 .
- \(\psi_{f d}, \psi_{l d}\), and \(\psi_{1 q}\) are the magnetic fluxes linking the field circuit, d-axis damper winding 1 , and q -axis damper winding 1 .
- \(R_{f d}, R_{1 d}\), and \(R_{1 q}\) are the resistances of rotor field circuit, d-axis damper winding 1 , and q -axis damper winding 1 .
- \(i_{f d}, i_{1 d}\), and \(i_{1 q}\) are the currents flowing in the field circuit, d-axis damper winding 1 , and q -axis damper winding 1 .

The saturation equations are defined by
\(\psi_{a t}=\sqrt{\psi_{d}^{2}+\psi_{q}^{2}}\),
\(K_{s}=1\) (If saturation is disabled),
\(K_{s}=f\left(\psi_{a t}\right)\) (If saturation is enabled),
and
\(L_{a d}=K_{s} * L_{a d u}\),
where:
- \(\psi_{a t}\) is the air-gap flux linkage.
- \(K_{s}\) is the saturation factor.
- \(L_{a d u}\) is the unsaturated mutual inductance of the stator d-axis.
- \(L_{a d}\) is the mutual inductance of the stator d-axis.

The saturation factor function, \(f\), is calculated from the per-unit open-circuit lookup table as:
\(L_{a d}=\frac{d \psi_{a t}}{d i_{f d}}\),
\(V_{a g}=g\left(i_{f d}\right)\),
and
\(L_{a d}=\frac{d g\left(i_{f d}\right)}{d i_{f d}}=\frac{d V_{a g}}{d i_{f d}}\),
where:
- \(V_{a g}\) is the per-unit air-gap voltage.

In per-unit,
\(K_{s}=\frac{L_{a d}}{L_{a d u}}\),
and
\[
\psi_{a t}=V_{a g}
\]
can be rearranged to
\[
K_{s}=f\left(\psi_{a t}\right) .
\]

The stator flux linkage equations are defined by
\(\Psi_{d}=-\left(L_{a d}+L_{i}\right) i_{d}+L_{a d} i_{f d}+L_{a d} i_{1 d}\),
\(\Psi q=-\left(L_{a q}+L_{i}\right) i_{q}+L_{a q} i_{1 q}\),
and
\[
\Psi_{0}=-L_{0} i_{0},
\]
where:
- \(L_{l}\) is the stator leakage inductance.
- \(L_{a d}\) and \(L_{a q}\) are the mutual inductances of the stator d-axis and q-axis.

The rotor flux linkage equations are defined by
\(\psi_{f d}=L_{f f d} i_{f d}+L_{f 1 d} i_{1 d}-L_{a d} i_{d}\),
\(\psi_{1 d}=L_{f 1 d} i_{f d}+L_{11 d} i_{1 d}-L_{a d} i_{d}\),
and
\(\psi_{1 q}=L_{11 q} i_{1 q}-L_{a q} i_{q}\),
where:
- \(L_{f f d}, L_{11 d}\), and \(L_{11 q}\) are the self-inductances of the rotor field circuit, d-axis damper winding 1 , and q -axis damper winding \(1 . L_{f f d}\) is the rotor field circuit and d-axis damper winding 1 mutual inductance. They are defined by the following equations.
\[
L_{f f d}=L_{a d}+L_{f d}
\]
\[
\begin{aligned}
& L_{f 1 d}=L_{f f d}-L_{f d} \\
& L_{11 d}=L_{f 1 d}+L_{1 d} \\
& L_{11 q}=L_{a q}+L_{1 q}
\end{aligned}
\]

These equations assume that per-unit mutual inductance \(L_{12 q}=L_{a q}\), i.e., the stator and rotor currents in the q-axis all link a single mutual flux represented by \(L_{a q}\).

The rotor torque is defined by
\(T_{e}=\Psi_{d} i_{q}-\Psi_{q} i_{d}\).

\section*{Display Options}

For synchronous machine blocks, you can perform display actions using the Power Systems menu on the block context menu.

Right-click the block. From the context menu, select one of the following from the Power Systems > Synchronous Machine menu:
- Display Base Values displays the machine per-unit base values at the MATLAB command prompt.
- Display Associated Base Values displays associated per-unit base values at the MATLAB command prompt.
- Associated Initial Conditions displays associated initial conditions at the MATLAB command prompt.
- Plot Open-Circuit Saturation (pu) plots air-gap voltage, \(V_{a g}\), versus field current, \(i_{f d}\), (both measured in per-unit) in a MATLAB figure window. The plot contains three traces:
- Unsaturated: Stator d-axis mutual inductance (unsaturated), Ladu you specify
- Saturated: Per-unit open-circuit lookup table (Vag versus ifd) you specify
- Derived: Open-circuit lookup table (per-unit) derived from the Per-unit opencircuit lookup table (Vag versus ifd) you specify. This data is used to calculate the saturation factor, \(K_{s}\), versus magnetic flux linkage, \(\psi_{a t}\), characteristic.
- Plot Saturation Factor (pu) plots saturation factor, \(K_{s}\), versus magnetic flux linkage, \(\psi_{a t}\), (both measured in per-unit) in a MATLAB figure window using the present machine parameters. This is derived from parameters you specify:
- Stator d-axis mutual inductance (unsaturated), Ladu
- Per-unit field current saturation data, ifd
- Per-unit air-gap voltage saturation data, Vag

\section*{Dialog Box and Parameters}

Block Parameters: Synchronous Machine Salient Pole (fundamental)
Synchronous Machine Salient Pole (fundamental)
Synchronous machine with a salient pole rotor parameterized using fundamental per-unit parameters.
Right-click on the block and select Simscape block choices to access variant implementations of this block.
Settings

- "Main Tab" on page 1-251
- "Impedances Tab" on page 1-251
- "Saturation Tab" on page 1-252
- "Initial Conditions Tab" on page 1-253

\section*{Main Tab}

\section*{Rated apparent power}

Rated apparent power. The default value is 300 e 6 VA .

\section*{Rated voltage}

RMS rated line-line voltage. The default value is 24 e 3 V .

\section*{Rated electrical frequency}

Nominal electrical frequency at which rated apparent power is quoted. The default value is 60 Hz .

\section*{Number of pole pairs}

Number of machine pole pairs. The default value is 10.
Specify field circuit input required to produce rated terminal voltage at no load by

Choose between Field circuit voltage and Field circuit current. The default value is Field circuit current.

\section*{Field circuit current}

This parameter is visible only when Specify field circuit input required to produce rated terminal voltage at no load by is set to Field circuit current. The default value is 1000 A .

\section*{Field circuit voltage}

This parameter is visible only when Specify field circuit input required to produce rated terminal voltage at no load by is set to Field circuit voltage. The default value is 216.54 V .

\section*{Impedances Tab}

\section*{Stator d-axis mutual inductance (unsaturated), Ladu \\ Unsaturated stator d-axis mutual inductance, \(L_{\text {adu }}\). If Magnetic saturation representation is set to None, this is equivalent to the stator d-axis mutual inductance, \(L_{a d}\). The default value is 0.9 pu .}

\section*{Stator q-axis mutual inductance, Laq}

Stator \(q\)-axis mutual inductance, Laq. The default value is 0.55 pu .

\section*{Stator zero-sequence inductance, \(L 0\)}

Stator zero-sequence inductance, L0. The default value is 0 pu .

\section*{Stator leakage inductance, Ll}

Stator leakage inductance. The default value is 0.15 pu .

\section*{Stator resistance, Ra}

Stator resistance. The default value is 0.011 pu.

\section*{Rotor field circuit inductance, Lfd}

Rotor field circuit inductance. The default value is 0.2571 pu .

\section*{Rotor field circuit resistance, Rfd}

Rotor field circuit resistance. The default value is 0.0006 pu .

\section*{Rotor d-axis damper winding 1 inductance, L1d}

Rotor d-axis damper winding 1 inductance. The default value is 0.2 pu .

\section*{Rotor d-axis damper winding 1 resistance, R1d}

Rotor d-axis damper winding 1 resistance. The default value is 0.0354 pu .

\section*{Rotor \(\mathbf{q}\)-axis damper winding 1 inductance, L1q}

Rotor q -axis damper winding 1 inductance. The default value is 0.2567 pu .

\section*{Rotor \(\mathbf{q}\)-axis damper winding 1 resistance, R1q}

Rotor \(q\)-axis damper winding 1 resistance. The default value is 0.0428 pu.

\section*{Saturation Tab}

\section*{Magnetic saturation representation}

Block magnetic saturation representation. Options are:
- None
- Per-unit open-circuit lookup table (Vag versus ifd)

The default value is None.
Per-unit field current saturation data, ifd
The field current, \(i_{f d}\), data populates the air-gap voltage, \(V_{a g}\), versus field current, \(i_{f d}\), lookup table. This parameter is only visible when you set Magnetic saturation
representation to Per-unit open-circuit lookup table (Vag versus ifd). This parameter must contain a vector with at least five elements. The default value is \([0.00,0.48,0.76,1.38,1.79]\) pu.

\section*{Per-unit air-gap voltage saturation data, Vag}

The air-gap voltage, \(V_{a g}\), data populates the air-gap voltage, \(V_{a g}\), versus field current, \(i_{f d}\), lookup table. This parameter is only visible when you set Magnetic saturation representation to Per-unit open-circuit lookup table (Vag versus ifd). This parameter must contain a vector with at least five elements. The default value is \(\left[\begin{array}{llll}0.00 & 0.43 & 0.59 & 0.71 \\ 0.76\end{array}\right] \mathrm{pu}\).

\section*{Initial Conditions Tab}

\section*{Specify initialization by}

Options include:
- Electrical power and voltage output
- Mechanical and magnetic states

The default value is Electrical power and voltage output.

\section*{Terminal voltage magnitude}

Initial RMS line-line voltage. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is 24 e 3 V .

\section*{Terminal voltage angle}

Initial voltage angle. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is 0 deg .

\section*{Terminal active power}

Initial active power. This parameter is visible only when Specify initialization by is set to Electrical power and voltage output. The default value is 270 e 6 VA.

\section*{Terminal reactive power}

Initial reactive power. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is 0 VA .

\section*{Initial rotor angle}

Initial rotor angle. During steady-state operation, set this parameter to the sum of the load angle and required terminal voltage offset. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 deg.

\section*{Initial stator d-axis magnetic flux linkage}

Stator d-axis initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu.

\section*{Initial stator \(q\)-axis magnetic flux linkage}

Stator \(q\)-axis initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu.

\section*{Initial stator zero-sequence magnetic flux linkage}

Zero-sequence initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu .

\section*{Initial field circuit magnetic flux linkage}

Field circuit initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu.

\section*{Initial d-axis damper winding 1 magnetic flux linkage}
d-axis damper winding 1 initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu .

\section*{Initial \(q\)-axis damper winding 1 magnetic flux linkage}

The \(q\)-axis damper winding 1 initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu .
Initial \(\mathbf{q}\)-axis damper winding 2 magnetic flux linkage
The \(q\)-axis damper winding 2 initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu .

\section*{Ports}

The block has the following ports:

\section*{fd+}

Electrical conserving port corresponding to the field winding positive terminal

\section*{fd-}

Electrical conserving port corresponding to the field winding negative terminal R

Mechanical rotational conserving port associated with the machine rotor C

Mechanical rotational conserving port associated with the machine case
pu
Physical signal vector port associated with the machine per-unit measurements. The vector elements are:
- pu_fd_Efd
- pu_fd_Ifd
- pu_torque
- pu_velocity
- pu_ed
- pu_ed
- pu_e0
- pu_id
- pu_iq
- pu_io

Expandable "three-phase port" associated with the stator windings
n
Electrical conserving port associated with the neutral point of the wye winding configuration

\section*{References}
[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
[2] Lyshevski, S. E. Electromechanical Systems, Electric Machines and Applied Mechatronics. Boca Raton, FL: CRC Press, 1999.

\section*{See Also}

Synchronous Machine Measurement | Synchronous Machine Round Rotor (fundamental) | Synchronous Machine Round Rotor (standard) | Synchronous Machine Salient Pole (standard)

\section*{Related Examples}
- "Expand and Collapse Three-Phase Ports on a Block"
- Three-Phase Synchronous Machine Control

\section*{Synchronous Machine Salient Pole (standard)}

Salient-pole synchronous machine with standard parameterization

\section*{Library}

Machines / Synchronous Machine (Salient Pole)

\section*{Description}


The Synchronous Machine Salient Pole (standard) block models a salient-pole synchronous machine with parameterization using standard parameters.

\section*{Electrical Defining Equations}

The synchronous machine equations are expressed with respect to a rotating reference frame defined by the equation
\[
\theta_{e}(t)=N * \theta_{r}(t),
\]

\section*{where:}
- \(\theta_{e}\) is the electrical angle.
- \(N\) is the number of pole pairs.
- \(\theta_{r}\) is the rotor angle.

Park's transformation maps the synchronous machine equations to the rotating reference frame with respect to the electrical angle. Park's transformation is defined by
\[
P_{s}=\frac{2}{3}\left[\begin{array}{ccc}
\cos \theta_{e} & \cos \left(\theta_{e}-\frac{2 \pi}{3}\right) & \cos \left(\theta_{e}+\frac{2 \pi}{3}\right) \\
-\sin \theta_{e} & -\sin \left(\theta_{e}-\frac{2 \pi}{3}\right) & -\sin \left(\theta_{e}-\frac{2 \pi}{3}\right) \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right] .
\]

Park's transformation is used to define the per-unit synchronous machine equations. The stator voltage equations are defined by
\(e_{d}=\frac{1}{\omega_{\text {base }}} \frac{\mathrm{d} \psi_{d}}{\mathrm{~d} t}-\Psi_{q} \omega_{r}-R_{a} i_{d}\),
\(e_{q}=\frac{1}{\omega_{\text {base }}} \frac{\mathrm{d} \psi_{q}}{\mathrm{~d} t}+\Psi_{d} \omega_{r}-R_{a} i_{q}\),
and
\(e_{0}=\frac{1}{\omega_{\text {base }}} \frac{d \Psi_{0}}{d t}-R_{a} i_{0}\),
where:
- \(e_{d}, e_{q}\), and \(e_{0}\) are the d-axis, q -axis, and zero-sequence stator voltages, defined by
\[
\left[\begin{array}{l}
e_{d} \\
e_{q} \\
e_{0}
\end{array}\right]=P_{s}\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right],
\]
where \(v_{a}, v_{b}\), and \(v_{c}\) are the stator voltages measured from port \(\sim\) to neutral port n .
- \(\omega_{\text {base }}\) is the per-unit base electrical speed.
- \(\psi_{d}, \psi_{q}\), and \(\psi_{0}\) are the d-axis, \(q\)-axis, and zero-sequence stator flux linkages.
- \(\omega_{r}\) is the per-unit rotor rotational speed.
- \(R_{a}\) is the stator resistance.
- \(i_{d}, i_{q}\) and \(i_{0}\) are the d-axis, \(q\)-axis, and zero-sequence stator currents, defined by
\[
\left[\begin{array}{l}
i_{d} \\
i_{q} \\
i_{0}
\end{array}\right]=P_{s}\left[\begin{array}{c}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right],
\]
where \(i_{a}, i_{b}\), and \(i_{c}\) are the stator currents flowing from port \(\sim\) to port n .
The rotor voltage equations are defined by
\(e_{f d}=\frac{1}{\omega_{b a s e}} \frac{d \Psi_{f d}}{d t}+R_{f d} i_{f d}\),
\(e_{1 d}=\frac{1}{\omega_{\text {base }}} \frac{d \Psi_{1 d}}{d t}+R_{1 d} i_{1 d}=0\),
and
\(e_{1 q}=\frac{1}{\omega_{\text {base }}} \frac{d \Psi_{1 q}}{d t}+R_{1 q} i_{1 q}=0\),
where:
- \(e_{f d}\) is the field voltage.
- \(e_{1 d}\), and \(e_{1 q}\) are the voltages across the d-axis damper winding 1 and q -axis damper winding 1 . They are equal to 0 .
- \(\psi_{f d}, \psi_{l d}\), and \(\psi_{l q}\), are the magnetic fluxes linking the field circuit, d-axis damper winding 1 , and q -axis damper winding 1.
- \(R_{f d}, R_{1 d}\), and \(R_{1 q}\) are the resistances of rotor field circuit, d-axis damper winding 1 , and q -axis damper winding 1 .
- \(i_{f d}, i_{1 d}\), and \(i_{1 q}\) are the currents flowing in the field circuit, d -axis damper winding 1 , and q -axis damper winding 1 .

The saturation equations are defined by
\(\psi_{a t}=\sqrt{\psi_{d}^{2}+\psi_{q}^{2}}\),
\(K_{s}=1\) (If saturation is disabled),
\(K_{s}=f\left(\psi_{a t}\right)\) (If saturation is enabled),
and
\(L_{a d}=K_{s} * L_{a d u}\),
where:
- \(\psi_{a t}\) is the air-gap flux linkage.
- \(K_{s}\) is the saturation factor.
- \(L_{a d u}\) is the unsaturated mutual inductance of the stator d-axis.
- \(L_{a d}\) is the mutual inductance of the stator d-axis.

The saturation factor function, \(f\), is calculated from the per-unit open-circuit lookup table as:
\(L_{a d}=\frac{d \psi_{a t}}{d i_{f d}}\),
\(V_{a g}=g\left(i_{f d}\right)\),
and
\(L_{a d}=\frac{d g\left(i_{f d}\right)}{d i_{f d}}=\frac{d V_{a g}}{d i_{f d}}\),
where:
- \(V_{a g}\) is the per-unit air-gap voltage.

In per-unit,
\(K_{s}=\frac{L_{a d}}{L_{a d u}}\),
and
\[
\psi_{a t}=V_{a g}
\]
can be rearranged to
\(K_{s}=f\left(\psi_{a t}\right)\).
The stator flux linkage equations are defined by
\(\Psi_{d}=-\left(L_{a d}+L_{i}\right) i_{d}+L_{a d} i_{f d}+L_{a d} i_{1 d}\),
\(\Psi q=-\left(L_{a q}+L_{i}\right) i_{q}+L_{a q} i_{1 q}\),
and
\(\Psi_{0}=-L_{0} i_{0}\),
where:
- \(L_{l}\) is the stator leakage inductance.
- \(L_{a d}\) and \(L_{a q}\) are the mutual inductances of the stator d-axis and q-axis.

The rotor flux linkage equations are defined by
\(\psi_{f d}=L_{f f d} i_{f d}+L_{f 1 d} i_{1 d}-L_{a d} i_{d}\),
\(\psi_{1 d}=L_{f 1 d} i_{f d}+L_{11 d} i_{1 d}-L_{a d} i_{d}\),
and
\(\psi_{1 q}=L_{11 q} i_{1 q}-L_{a q} i_{q}\),
where:
- \(L_{f f d}, L_{11 d}\), and \(L_{11 q}\) are the self-inductances of the rotor field circuit, d-axis damper winding 1 , and q -axis damper winding \(1 . L_{f f d}\) is the rotor field circuit and d-axis damper winding 1 mutual inductance. They are defined by the following equations.
\[
L_{f f d}=L_{a d}+L_{f d}
\]
\[
\begin{aligned}
& L_{f 1 d}=L_{f f d}-L_{f d} \\
& L_{11 d}=L_{f 1 d}+L_{1 d} \\
& L_{11 q}=L_{a q}+L_{1 q}
\end{aligned}
\]

These equations assume that per-unit mutual inductance \(L_{12 q}=L_{a q}\), i.e., the stator and rotor currents in the \(q\)-axis all link a single mutual flux represented by \(L_{a q}\).

The rotor torque is defined by
\[
T_{e}=\Psi_{d} i_{q}-\Psi_{q} i_{d} .
\]

These defining equations do not describe the time constants you can set in the dialog box. To see their relationship with the equation coefficients, see [1].

\section*{Display Options}

For synchronous machine blocks, you can perform display actions using the Power Systems menu on the block context menu.

Right-click the block. From the context menu, select one of the following from the Power Systems > Synchronous Machine menu:
- Display Base Values displays the machine per-unit base values at the MATLAB command prompt.
- Display Associated Base Values displays associated per-unit base values at the MATLAB command prompt.
- Associated Initial Conditions displays associated initial conditions at the MATLAB command prompt.
- Plot Open-Circuit Saturation (pu) plots air-gap voltage, \(V_{a g}\), versus field current, \(i_{f d}\), (both measured in per-unit) in a MATLAB figure window. The plot contains three traces:
- Unsaturated: Stator d-axis mutual inductance (unsaturated), Ladu you specify
- Saturated: Per-unit open-circuit lookup table (Vag versus ifd) you specify
- Derived: Open-circuit lookup table (per-unit) derived from the Per-unit opencircuit lookup table (Vag versus ifd) you specify. This data is used to calculate the saturation factor, \(K_{s}\), versus magnetic flux linkage, \(\psi_{a t}\), characteristic.
- Plot Saturation Factor (pu) plots saturation factor, \(K_{s}\), versus magnetic flux linkage, \(\psi_{a t}\), (both measured in per-unit) in a MATLAB figure window using the present machine parameters. This is derived from parameters you specify:
- Stator d-axis mutual inductance (unsaturated), Ladu
- Per-unit field current saturation data, ifd
- Per-unit air-gap voltage saturation data, Vag

\section*{Dialog Box and Parameters}

Block Parameters: Synchronous Machine Salient Pole (standard)
Synchronous Machine Salient Pole (standard)
Synchronous machine with a salient pole rotor parameterized using standard per-unit parameters. For simulation, transient and subtransient parameter values are converted to fundamental per-unit parameters based on classical definitions.

Right-click on the block and select Simscape block choices to access variant implementations of this block.
Settings


- "Main Tab" on page 1-264
- "Impedances Tab" on page 1-264
- "Time Constants Tab" on page 1-265
- "Saturation Tab" on page 1-266
- "Initial Conditions Tab" on page 1-267

\section*{Main Tab}

\section*{Rated apparent power}

Rated apparent power. The default value is 300 e 6 VA .

\section*{Rated voltage}

RMS rated line-line voltage. The default value is 24 e 3 V .

\section*{Rated electrical frequency}

Nominal electrical frequency at which rated apparent power is quoted. The default value is 60 Hz .

\section*{Number of pole pairs}

Number of machine pole pairs. The default value is 10.
Specify field circuit input required to produce rated terminal voltage at no load by

Choose between Field circuit voltage and Field circuit current. The default value is Field circuit current.

\section*{Field circuit current}

This parameter is visible only when Specify field circuit input required to produce rated terminal voltage at no load by is set to Field circuit current. The default value is 1000 A .

\section*{Field circuit voltage}

This parameter is visible only when Specify field circuit input required to produce rated terminal voltage at no load by is set to Field circuit voltage. The default value is 216.54 V .

\section*{Impedances Tab}

\section*{Stator resistance, Ra}

Stator resistance. The default value is 0.011 pu .

\section*{Stator leakage reactance, Xl}

Stator leakage reactance. The default value is 0.15 pu .

\section*{d-axis synchronous reactance, Xd}

The d-axis synchronous reactance. The default value is 1.05 pu .

\section*{\(\mathbf{q}\)-axis synchronous reactance, \(\mathbf{X q}\)}

The \(q\)-axis synchronous reactance. The default value is 0.7 pu . zero-sequence reactance, \(\mathrm{X0}\)

The zero-sequence reactance. The default value is 0 pu .

\section*{d-axis transient reactance, \(\mathrm{Xd}^{\prime}\)}

The d-axis transient reactance. The default value is 0.35 pu . d-axis subtransient reactance, \(\mathrm{Xd}^{\prime \prime}\)

The d-axis subtransient reactance. The default value is 0.25 pu . \(\mathbf{q}\)-axis subtransient reactance, \(\mathrm{Xq}^{\prime \prime}\)

The \(q\)-axis subtransient reactance. The default value is 0.325 pu .

\section*{Time Constants Tab}

Specify d-axis transient time constant
Select between Open circuit value and Short circuit value. The default value is Open circuit value.
d-axis transient open circuit, Td0'
The d-axis transient open circuit time constant. This parameter is visible only when Specify d-axis transient time constant is set to Open circuit value. The default value is 5.25 s .
d-axis transient short circuit, Td'
The d-axis transient short circuit time constant. This parameter is visible only when Specify d-axis transient time constant is set to Short circuit value. The default value is 1.75 s .

Specify d-axis subtransient time constant
Select between Open circuit value and Short circuit value. The default value is Open circuit value.
d-axis subtransient open circuit, Td0"

The d-axis subtransient open circuit time constant. This parameter is visible only when Specify d-axis subtransient time constant is set to Open circuit value. The default value is 0.03 s .
d-axis subtransient short circuit, Td"
The d-axis subtransient short circuit time constant. This parameter is visible only when Specify d-axis subtransient time constant is set to Short circuit value. The default value is 0.0214 s .

\section*{Specify q-axis subtransient time constant}

Select between Open circuit value and Short circuit value. The default value is Open circuit value.
q-axis subtransient open circuit, Tq \(0^{\prime \prime}\)
The \(q\)-axis subtransient open circuit time constant. This parameter is visible only when Specify \(q\)-axis subtransient time constant is set to Open circuit value. The default value is 0.05 s .
q-axis subtransient short circuit, Tq"
The \(q\)-axis subtransient short circuit time constant. This parameter is visible only when Specify \(q\)-axis subtransient time constant is set to Short circuit value. The default value is 0.0232 s .

\section*{Saturation Tab}

\section*{Magnetic saturation representation}

Block magnetic saturation representation. Options are:
- None
- Per-unit open-circuit lookup table (Vag versus ifd)

The default value is None.
Per-unit field current saturation data, ifd
The field current, \(i_{f d}\), data populates the air-gap voltage, \(V_{a g}\), versus field current, \(i_{f d}\), lookup table. This parameter is only visible when you set Magnetic saturation representation to Per-unit open-circuit lookup table (Vag versus ifd). This parameter must contain a vector with at least five elements. The default value is \([0.00,0.48,0.76,1.38,1.79]\) pu.
Per-unit air-gap voltage saturation data, Vag

The air-gap voltage, \(V_{a g}\), data populates the air-gap voltage, \(V_{a g}\), versus field current, \(i_{f d}\), lookup table. This parameter is only visible when you set Magnetic saturation representation to Per-unit open-circuit lookup table (Vag versus ifd). This parameter must contain a vector with at least five elements. The default value is \(\left[\begin{array}{lllll}0.00 & 0.43 & 0.59 & 0.71 & 0.76\end{array}\right] \mathrm{pu}\).

\section*{Initial Conditions Tab}

Specify initialization by
Options include:
- Electrical power and voltage output
- Mechanical and magnetic states

The default value is Electrical power and voltage output.

\section*{Terminal voltage magnitude}

Initial RMS line-line voltage. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is 24 e 3 V .

\section*{Terminal voltage angle}

Initial voltage angle. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is 0 deg .

\section*{Terminal active power}

Initial active power. This parameter is visible only when Specify initialization by is set to Electrical power and voltage output. The default value is 270 e 6 VA.

\section*{Terminal reactive power}

Initial reactive power. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is 0 VA .

\section*{Initial rotor angle}

Initial rotor angle. During steady-state operation, set this parameter to the sum of the load angle and required terminal voltage offset. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 deg.

\section*{Initial stator d-axis magnetic flux linkage}

Stator d-axis initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu.

\section*{Initial stator \(q\)-axis magnetic flux linkage}

Stator q-axis initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu.

\section*{Initial stator zero-sequence magnetic flux linkage}

Zero-sequence initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu .

\section*{Initial field circuit magnetic flux linkage}

Field circuit initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu.

\section*{Initial d-axis damper winding 1 magnetic flux linkage}
d-axis damper winding 1 initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu .

\section*{Initial \(q\)-axis damper winding 1 magnetic flux linkage}

The \(q\)-axis damper winding 1 initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu .

\section*{Initial \(q\)-axis damper winding 2 magnetic flux linkage}

The \(q\)-axis damper winding 2 initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu .

\section*{Ports}

The block has the following ports:
fd+

Electrical conserving port corresponding to the field winding positive terminal fd-

Electrical conserving port corresponding to the field winding negative terminal R

Mechanical rotational conserving port associated with the machine rotor C

Mechanical rotational conserving port associated with the machine case pu

Physical signal vector port associated with the machine per-unit measurements. The vector elements are:
- pu_fd_Efd
- pu_fd_Ifd
- pu_torque
- pu_velocity
- pu_ed
- pu_ed
- pu_e0
- pu_id
- pu_iq
- pu_io

Expandable "three-phase port" associated with the stator windings n

Electrical conserving port associated with the neutral point of the wye winding configuration

\section*{References}
[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
[2] Lyshevski, S. E. Electromechanical Systems, Electric Machines and Applied Mechatronics. Boca Raton, FL: CRC Press, 1999.

\section*{See Also}

Synchronous Machine Measurement | Synchronous Machine Round Rotor (Fundamental) | Synchronous Machine Round Rotor (Standard) | Synchronous Machine Salient Pole (Fundamental)

\section*{Related Examples}
- "Expand and Collapse Three-Phase Ports on a Block"
- Three-Phase Synchronous Machine Control

\section*{Three Element Demux}

Convert three-element physical signal vector into scalar physical signals

\section*{Library}

Sensors

\section*{Description}


The Three Element Demux block splits a three-element physical signal vector into three scalar physical signals.

\section*{Dialog Box and Parameters}

```

 Three Element Demux
 Splits a physical signal vector of length three into three scalar
 physical signals.
 The block has no parameters.

Ports

The block has the following ports:
abc

Three-element physical signal input port. a

Scalar physical signal output port.
b
Scalar physical signal output port.
C
Scalar physical signal output port.

Three-Level Converter

Connect three-phase AC network to three-level DC network

Library

Semiconductors

Description

The Three-Level Converter block models a three-arm converter circuit that connects a three-phase AC network to a three-level DC network.

Each component in the three-arm circuit is the same switching device, which you specify using an option in the Converter block dialog box. The switching devices are in the Semiconductors > Fundamental Components sublibrary.

The figure shows the equivalent circuit for the block using an Ideal Semiconductor block as the switching device.

You control the gate ports of the 12 switching devices via an input to the Three-Level Converter block G port.

1 Use a Twelve-Pulse Gate Multiplexer block to multiplex all 12 gate signals into a single vector.
2 Connect the output of the Twelve-Pulse Gate Multiplexer block to the Three-Level Converter block G port.

You use the Diodes tab of the block dialog box to include an integral protection diode for each switching device. An integral diode protects the semiconductor device by providing a conduction path for reverse current. An inductive load can produce a high reverse-voltage spike when the semiconductor device suddenly switches off the voltage supply to the load.

The table shows how to set the Integral protection diode parameter based on your goals.

Goal	Value to Select	Block Behavior
Prioritize simulation speed.	Protection diode with no dynamics	The block includes an integral copy of the Diode block. The block dialog box shows parameters relating to the Diode block.
Precisely specify reverse- mode charge dynamics.	Protection diode with charge dynamics	The block includes an integral copy of the Commutation Diode block. The block dialog box shows parameters relating to the Commutation Diode block.

You use the Snubbers tab of the block dialog box to include a snubber circuit for each switching device. Each snubber consists of a resistor and capacitor connected in series. Typically, a snubber circuit protects a switching device against very high voltages produced by an inductive load when the device turns off the voltage supply to the load. Snubber circuits also prevent excessive rates of change of current when a switching device turns on.

Dialog Box and Parameters

- "Switching Devices Tab" on page 1-276
- "Diodes Tab" on page 1-279
- "Snubbers Tab" on page 1-282

Switching Devices Tab

Switching device

Converter switching device. The default value is Ideal Semiconductor Switch.
The switching devices you can select are:

- GTO
- Ideal Semiconductor Switch
- IGBT
- MOSFET

GTO Parameters

When you select GTO, parameters for the GTO block appear.

Additional GTO Parameters

Forward voltage, Vf

Minimum voltage required across the anode and cathode block ports for the gradient of the device i-v characteristic to be $1 / R_{\text {on }}$, where $R_{\text {on }}$ is the value of On-state resistance. The default value is 0.8 V .

On-state resistance

Rate of change of voltage versus current above the forward voltage. The default value is 0.001Ω.

Off-state conductance

Anode-cathode conductance when the device is off. The value must be less than $1 / R$, where R is the value of $\mathbf{O n}$-state resistance. The default value is $1 e-6 \Omega^{-1}$.

Gate trigger voltage, Vgt

Gate-cathode voltage threshold. The device turns on when the gate-cathode voltage is above this value. The default value is 1 V .

Gate turn-off voltage, Vgt_off

Gate-cathode voltage threshold. The device turns off when the gate-cathode voltage is below this value. The default value is -1 V .

Holding current

Current threshold. The device stays on when the current is above this value, even when the gate-cathode voltage falls below the gate trigger voltage. The default value is 1 A .

For more information, see GTO.

Ideal Semiconductor Switch Parameters

When you select Ideal Semiconductor Switch, parameters for the Ideal Semiconductor Switch block appear.

Additional Ideal Semiconductor Switch Parameters

On-state resistance

Anode-cathode resistance when the device is on. The default value is 0.001Ω.

Off-state conductance

Anode-cathode conductance when the device is off. The value must be less than $1 / R$, where R is the value of $\mathbf{O n}$-state resistance. The default value is $1 e-6 \Omega^{-1}$.

Threshold voltage, Vth

Gate-cathode voltage threshold. The device turns on when the gate-cathode voltage is above this value. The default value is 6 V .

For more information, see Ideal Semiconductor Switch.

IGBT Parameters

When you select IGBT, parameters for the IGBT block appear.

Additional IGBT Parameters

Forward voltage, Vf

Minimum voltage required across the collector and emitter block ports for the gradient of the diode i-v characteristic to be $1 / R_{\text {on }}$, where $R_{\text {on }}$ is the value of $\mathbf{O n}$-state resistance. The default value is 0.8 V .

On-state resistance

Collector-emitter resistance when the device is on. The default value is 0.001Ω.

Off-state conductance

Collector-emitter conductance when the device is off. The value must be less than 1 / R, where R is the value of $O n$-state resistance. The default value is $1 e-6 \Omega^{-1}$.

Threshold voltage, Vth

Collector-emitter voltage at which the device turns on. The default value is 6 V .
For more information, see IGBT.

MOSFET Parameters

When you select MOSFET, parameters for the MOSFET block appear.

Additional MOSFET Parameters

On-state resistance, R_DS(on)

Drain-source resistance when the device is on. The default value is 0.001Ω.

Off-state conductance

Drain-source conductance when the device is off. The value must be less than $1 / R$, where R is the value of $\mathbf{O n}$-state resistance. The default value is $1 e-6 \Omega^{-1}$.

Threshold voltage, Vth

Gate-source voltage threshold. The device turns on when the gate-source voltage is above this value. The default value is 6 V .

For more information, see MOSFET.

Diodes Tab

Integral protection diode

Integral protection diode for each switching device. Choose betweenDiode with no dynamics and Diode with charge dynamics. The default value is Diode with no dynamics.

Parameters for Diode with no dynamics

When you select Diode with no dynamics, additional parameters appear.

Additional Parameters for Diode with no dynamics

Forward voltage

Minimum voltage required across the + and - block ports for the gradient of the diode i-v characteristic to be $1 / R_{\text {on }}$, where $R_{\text {on }}$ is the value of $\mathbf{O n}$ resistance. The default value is 0.8 V .

On resistance

Rate of change of voltage versus current above the forward voltage. The default value is 0.001Ω.

Off conductance

Conductance of the reverse-biased diode. The default value is $1 \mathrm{e}-5 \Omega^{-1}$.
For more information on these parameters, see Diode.

Parameters for Diode with charge dynamics

When you select Protection diode with charge dynamics, additional parameters appear.

Additional Parameters for Diode with charge dynamics

Forward voltage

Minimum voltage required across the + and - block ports for the gradient of the diode i-v characteristic to be $1 / R_{\text {on }}$, where $R_{\text {on }}$ is the value of On resistance. The default value is 0.8 V .

On resistance

Rate of change of voltage versus current above the forward voltage. The default value is 0.001Ω.

Off conductance

Conductance of the reverse-biased diode. The default value is $1 \mathrm{e}-5 \Omega^{-1}$.

Junction capacitance

Diode junction capacitance. The default value is 50 nF .

Peak reverse current, iRM

Peak reverse current measured by an external test circuit. This value must be less than zero. The default value is -235 A .

Initial forward current when measuring iRM

Initial forward current when measuring peak reverse current. This value must be greater than zero. The default value is 300 A .

Rate of change of current when measuring iRM

Rate of change of current when measuring peak reverse current. This value must be less than zero. The default value is $-50 \mathrm{~A} / \mu \mathrm{s}$.

Reverse recovery time parameterization

Determines how you specify reverse recovery time in the block. The default value is Specify reverse recovery time directly.

If you select Specify stretch factor or Specify reverse recovery charge, you specify a value that the block uses to derive the reverse recovery time. For more information on these options, see "Alternatives to Specifying trr Directly".

Reverse recovery time, trr

Interval between the time when the current initially goes to zero (when the diode turns off) and the time when the current falls to less than 10% of the peak reverse current. The default value is $\mathbf{1 5}$ us.

This parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery time directly.

The value of the Reverse recovery time, trr parameter must be greater than the value of the Peak reverse current, iRM parameter divided by the value of the Rate of change of current when measuring iRM parameter.

Reverse recovery time stretch factor

Value that the block uses to calculate Reverse recovery time, trr. This value must be greater than 1. The default value is 3 .

This parameter is visible only if you set Reverse recovery time parameterization to Specify stretch factor.

Specifying the stretch factor is an easier way to parameterize the reverse recovery time than specifying the reverse recovery charge. The larger the value for the stretch factor, the longer it takes for the reverse recovery current to dissipate.

Reverse recovery charge, Qrr

Value that the block uses to calculate Reverse recovery time, trr. Use this parameter if the data sheet for your diode device specifies a value for reverse recovery charge instead of a value for reverse recovery time.

Reverse recovery charge is the total charge that remains to dissipate when the diode turns off. The value must be less than $-\frac{i^{2}{ }_{R M}}{2 a}$,
where:

- $i_{R M}$ is the value specified for Peak reverse current, iRM.
- a is the value specified for Rate of change of current when measuring iRM.

The default value is $\mathbf{1 5 0 0} \mu \mathrm{As}$.
The parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery charge.

For more information on these parameters, see Commutation Diode.

Snubbers Tab

Snubber

Snubber for each switching device. The default value is None.

Snubber resistance

This parameter is visible only if you set Snubber to RC snubber. The default value is 0.1Ω.

Snubber capacitance

This parameter is visible only if you set Snubber to RC snubber. The default value is $1 \mathrm{e}-7 \mathrm{~F}$.

Ports

The block has the following ports:
G
Vector input port associated with the gate terminals of the switching devices. Connect this port to a Twelve-Pulse Gate Multiplexer block.
~
Expandable "three-phase port".
$+$
Electrical conserving port associated with the DC positive terminal.
0
Electrical conserving port associated with the DC neutral terminal.
-
Electrical conserving port associated with the DC negative terminal.

See Also

Converter | Ideal Rectifier | Rectifier | Twelve-Pulse Gate Multiplexer

Related Examples

- "Expand and Collapse Three-Phase Ports on a Block"

Thyristor

Thyristor

Library

Semiconductors / Fundamental Components

Description

The Thyristor block models a thyristor. The figure shows a typical i-v characteristic for a thyristor.

The thyristor turns on if the gate-cathode voltage exceeds the specified gate trigger voltage. The device turns off if the load current falls below the specified holding-current value.

In the on state, the anode-cathode path behaves like a linear diode with forward-voltage drop V_{f} and on-resistance $R_{o n}$.

In the off state, the anode-cathode path behaves like a linear resistor with a low off-state conductance $G_{\text {off }}$.

The defining Simscape equations for the block are:

```
if (v > Vf)&&((G>Vgt)||(i>Ih))
    i == (v - Vf*(1-Ron*Goff))/Ron;
else
    i == v*Goff;
end
```

where:

- $\quad v$ is the anode-cathode voltage.
- $V f$ is the forward voltage.
- G is the gate voltage.
- Vgt is the gate trigger voltage.
- i is the anode-cathode current.
- Ih is the holding current.
- Ron is the on-state resistance.
- Goff is the off-state conductance.

Using the Integral Diode tab of the block dialog box, you can include an integral cathode-anode diode. An integral diode protects the semiconductor device by providing a conduction path for reverse current. An inductive load can produce a high reverse-voltage spike when the semiconductor device suddenly switches off the voltage supply to the load.

The table shows you how to set the Integral protection diode parameter based on your goals.

Goal	Value to Select	Block Behavior
Prioritize simulation speed.	Protection diode with no dynamics	The block includes an integral copy of the Diode block. The block dialog box shows parameters relating to the Diode block.
Precisely specify reverse- mode charge dynamics.	Protection diode with charge dynamics	The block includes an integral copy of the Commutation Diode block. The block dialog box shows parameters relating to the Commutation Diode block.

Dialog Box and Parameters

- "Main Tab" on page 1-285
- "Integral Diode Tab" on page 1-286

Main Tab

Forward voltage, Vf

Forward voltage at which the device turns on. The default value is 0.8 V .

On-state resistance

Anode-cathode resistance when the device is on. The default value is 0.001Ω.

Off-state conductance

Anode-cathode conductance when the device is off. The value must be less than $1 / R$, where R is the value of $\mathbf{O n}$-state resistance. The default value is $1 e-5 \Omega^{-1}$.

Gate trigger voltage, Vgt

Gate-cathode voltage threshold. The device turns on when the gate-cathode voltage is above this value. The default value is 6 V .

Holding current

Current threshold. The device stays on when the current is above this value, even when the gate-cathode voltage falls below the gate trigger voltage. The default value is 1 A .

Integral Diode Tab

Integral protection diode

Block integral protection diode. The default value is None.
The diodes you can select are:

- Protection diode with no dynamics
- Protection diode with charge dynamics

Parameters for Protection diode with no dynamics

When you select Protection diode with no dynamics, additional parameters appear.

Additional Parameters for Protection diode with no dynamics

Forward voltage

Minimum voltage required across the + and - block ports for the gradient of the diode i-v characteristic to be $1 / R_{\text {on }}$, where $R_{\text {on }}$ is the value of $\mathbf{O n}$ resistance. The default value is 0.8 V .

On resistance

Rate of change of voltage versus current above the forward voltage. The default value is 0.001Ω.

Off conductance

Conductance of the reverse-biased diode. The default value is $1 \mathrm{e}-5 \Omega^{-1}$.

For more information on these parameters, see Diode.

Parameters for Protection diode with charge dynamics

When you select Protection diode with charge dynamics, additional parameters appear.

Additional Parameters for Protection diode with charge dynamics

Forward voltage

Minimum voltage required across the + and - block ports for the gradient of the diode i-v characteristic to be $1 / R_{\text {on }}$, where $R_{\text {on }}$ is the value of $\mathbf{O n}$ resistance. The default value is 0.8 V .

On resistance

Rate of change of voltage versus current above the forward voltage. The default value is 0.001Ω.

Off conductance

Conductance of the reverse-biased diode. The default value is $1 \mathrm{e}-5 \Omega^{-1}$.

Junction capacitance

Diode junction capacitance. The default value is 50 nF .

Peak reverse current, iRM

Peak reverse current measured by an external test circuit. This value must be less than zero. The default value is -235 A .

Initial forward current when measuring iRM

Initial forward current when measuring peak reverse current. This value must be greater than zero. The default value is 300 A .

Rate of change of current when measuring iRM

Rate of change of current when measuring peak reverse current. This value must be less than zero. The default value is $-50 \mathrm{~A} / \mu \mathrm{s}$.

Reverse recovery time parameterization

Determines how you specify reverse recovery time in the block. The default value is Specify reverse recovery time directly.

If you select Specify stretch factor or Specify reverse recovery charge, you specify a value that the block uses to derive the reverse recovery time. For more information on these options, see "Alternatives to Specifying trr Directly".

Reverse recovery time, trr

Interval between the time when the current initially goes to zero (when the diode turns off) and the time when the current falls to less than 10% of the peak reverse current. The default value is $\mathbf{1 5} \mu \mathrm{s}$.

This parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery time directly.

The value of the Reverse recovery time, trr parameter must be greater than the value of the Peak reverse current, iRM parameter divided by the value of the Rate of change of current when measuring iRM parameter.

Reverse recovery time stretch factor

Value that the block uses to calculate Reverse recovery time, trr. This value must be greater than 1 . The default value is 3 .

This parameter is visible only if you set Reverse recovery time parameterization to Specify stretch factor.

Specifying the stretch factor is an easier way to parameterize the reverse recovery time than specifying the reverse recovery charge. The larger the value for the stretch factor, the longer it takes for the reverse recovery current to dissipate.

Reverse recovery charge, Qrr

Value that the block uses to calculate Reverse recovery time, trr. Use this parameter if the data sheet for your diode device specifies a value for reverse recovery charge instead of a value for reverse recovery time.

Reverse recovery charge is the total charge that remains to dissipate when the diode turns off. The value must be less than $-\frac{i^{2}{ }_{R M}}{2 a}$,
where:

- $i_{R M}$ is the value specified for Peak reverse current, iRM.
- a is the value specified for Rate of change of current when measuring iRM.

The default value is $\mathbf{1 5 0 0} \mu \mathrm{As}$.

The parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery charge.

For more information on these parameters, see Commutation Diode.

Ports

This figure shows the block port names.

G
Port associated with the gate terminal. You can set the port to either a physical signal or electrical port.

A
Electrical conserving port associated with the anode terminal.
K
Electrical conserving port associated with the cathode terminal.

Related Examples

- "Switch Between Physical Signal and Electrical Ports"

Time-Based Fault

Time-based single-phase, two-phase or three-phase grounded or ungrounded fault

Library

Passive Devices / Faults

Description

The Time-Based Fault block models any permutation of a single-phase, two-phase, or three-phase grounded or ungrounded fault. You specify the fault activation time using the block Fault start time parameter. The fault becomes inactive when the fault duration that you specify elapses.

You can set the Time-Based Fault block to represent any of these:

- Single-phase-to-ground fault (a-g, b-g or c-g)
- Two-phase fault (a-b, b-c or c-a)
- Two-phase-to-ground fault (a-b-g, b-c-g or c-a-g)
- Three-phase fault (a-b-c)
- Three-phase-to-ground fault (a-b-c-g)

The figure shows the equivalent circuit diagram for the Time-Based Fault block.

You can determine the resistance in the equivalent circuit using the equations in the table.

Fault type	Value of $\boldsymbol{R}_{\mathbf{a}}$	Value of $\boldsymbol{R}_{\mathbf{b}}$	Value of $\boldsymbol{R}_{\mathbf{c}}$	Value of $\boldsymbol{R}_{\boldsymbol{g}}$
None / inactive	$\frac{1}{G_{p n}}$	$\frac{1}{G_{p n}}$	$\frac{1}{G_{p n}}$	Infinity / open circuit
a-g	$R_{p n}$	$\frac{1}{G_{p n}}$	$\frac{1}{G_{p n}}$	$R_{n g}$
b-g	$\frac{1}{G_{p n}}$	$R_{p n}$	$\frac{1}{G_{p n}}$	$R_{n g}$
c-g	$\frac{1}{G_{p n}}$	$\frac{1}{G_{p n}}$	$R_{p n}$	$R_{n g}$
a-b	$R_{p n}$	$R_{p n}$	$\frac{1}{G_{p n}}$	Infinity / open circuit
b-c	$\frac{1}{G_{p n}}$	$R_{p n}$	$R_{p n}$	Infinity / open circuit

Fault type	Value of $\boldsymbol{R}_{\boldsymbol{a}}$	Value of $\boldsymbol{R}_{\mathbf{b}}$	Value of $\boldsymbol{R}_{\boldsymbol{c}}$	Value of $\boldsymbol{R}_{\boldsymbol{g}}$
c-a	$R_{p n}$	$\frac{1}{G_{p n}}$	$R_{p n}$	Infinity / open circuit
a-b-g	$R_{p n}$	$R_{p n}$	$\frac{1}{G_{p n}}$	$R_{n g}$
b-c-g	$\frac{1}{G_{p n}}$	$R_{p n}$	$\frac{1}{G_{p n}}$	$R_{p n}$
c-a-g	$R_{p n}$	$R_{p n}$	$R_{n g}$	
a-b-c	$R_{p n}$	$R_{p n}$	$R_{p n}$	$R_{n g}$
a-b-c-g			Infinity / open circuit	

where:

- R_{a} is the resistance between the a-phase and the neutral point of a wye connection.
- R_{b} is the resistance between the b-phase and the neutral point of a wye connection.
- R_{c} is the resistance between the c-phase and the neutral point of a wye connection.
- R_{g} is the resistance between the neutral point of a wye connection and electrical reference.
- $R_{p n}$ is the value of the Faulted phase-neutral resistance parameter.
- $R_{n g}$ is the value of the Faulted neutral-ground resistance parameter.
- $G_{p n}$ is the value of the Unfaulted phase-neutral conductance parameter.

Dialog Box and Parameters

- "Main Tab" on page 1-293
- "Parasitics Tab" on page 1-294

Main Tab

Fault type

Select one of the following:

- None - Specifies that the fault is not active. This is the default value.
- Single-phase to ground (a-g)
- Single-phase to ground (b-g)
- Single-phase to ground (c-g)
- Two-phase (a-b)
- Two-phase (b-c)
- Two-phase (c-a)
- Two-phase to ground (a-b-g)
- Two-phase to ground (b-c-g)
- Two-phase to ground (c-a-g)
- Three-phase (a-b-c)
- Three-phase to ground (a-b-c-g)

Faulted phase-neutral resistance

Resistance between the phase connection and the neutral point when the fault is active. This parameter is visible if the Fault type parameter is set to anything other than None. The default value is $1 \mathrm{e}-3 \Omega$.

Faulted neutral-ground resistance

Resistance between the neutral point and the electrical reference when fault is active. This parameter is visible if the Fault type parameter is set to any fault which includes a ground connection. The default value is $1 \mathrm{e}-3 \Omega$.

Fault start time

Simulation time when the fault becomes active. This parameter is visible if the Fault type parameter is set to anything other than None. The default value is 1 s .

Fault duration

Period of time that the fault is active. This parameter is visible if the Fault type parameter is set to anything other than None. The default value is 0.1 s .

Parasitics Tab

Unfaulted phase-neutral conductance

Conductance between the phase connections and the neutral point when a phase is not involved in the fault. The default value is $1 \mathrm{e}-6 \Omega^{-1}$.

Ports

The block has one expandable "three-phase port" for connecting the fault to the system.

See Also

Enabled Fault

Transmission Line

Three-phase transmission line using lumped-parameter pi-line model

Library

Passive Devices

Description

The Transmission Line block models a three-phase transmission line using the lumpedparameter pi-line model. This model takes into account phase resistance, phase self-inductance, line-line mutual inductance, line-line capacitance, and line-ground capacitance.

To simplify the block-defining equations, Clarke's transformation is used. The resulting equations are:

$$
\begin{aligned}
& V_{1}^{\prime}-V_{2}^{\prime}=\left[\begin{array}{lll}
R & & \\
& R & \\
& & R
\end{array}\right],\left[\begin{array}{lll}
L+2 M & & \\
& L-M & \\
& & L-M
\end{array}\right] \frac{d I_{1}^{\prime}}{d t} \\
& I_{1}^{\prime}+I_{2}^{\prime}
\end{aligned}=\left[\begin{array}{lll}
C_{g} & & \\
& C_{g}+3 C_{l} & \\
& & C_{g}+3 C_{l}
\end{array}\right] \frac{d V_{2}^{\prime}}{d t} .
$$

$$
I_{1}^{\prime}=T^{\prime} I_{1}
$$

$$
\begin{aligned}
& I_{2}^{\prime}=T^{\prime} I_{2} \\
& V_{1}^{\prime}=T^{\prime} V_{1} \\
& V_{2}^{\prime}=T^{\prime} V_{2} \\
& T=\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}
1 & \sqrt{2} & 0 \\
1 & -1 / \sqrt{2} & \sqrt{3 / 2} \\
1 & -1 / \sqrt{2} & -\sqrt{3 / 2}
\end{array}\right]
\end{aligned}
$$

where:

- R is the line resistance for the segment.
- L is the line inductance for the segment.
- C_{g} is the line-ground capacitance for the segment.
- C_{l} is the line-line capacitance for the segment.
- T is the Clarke's transformation matrix.
- $I 1$ is the three-phase current flowing into the ~ 1 port.
- $I 2$ is the three-phase current flowing into the ~ 2 port.
- $V 1$ is the three-phase voltage at the ~ 1 port.
- $V 2$ is the three-phase voltage at the ~ 2 port.

The figure shows the equivalent electrical circuit for a single-segment pi-line model using Clarke's transformation.

To increase fidelity, you can use the Number of segments parameter to repeat the pi-section N times, resulting in an N -segment transmission line model. More segments significantly slows down your simulation.

To improve numerical performance, you can add parasitic resistance and conductance components. Choosing large values for these components improves simulation speed but decreases simulation accuracy.

Dialog Box and Parameters

- "Main tab" on page 1-298
- "Parasitics tab" on page 1-299

Main tab

Line length

Length of the transmission line. The default value is 1 km .

Resistance

Resistance of the transmission line per phase per unit length. The default value is $0.02 \Omega / \mathrm{km}$.

Inductance

Self-inductance of the transmission line per phase per unit length. The default value is $0.5 \mathrm{mH} / \mathrm{km}$.

Mutual inductance

Line-line mutual inductance per unit length. Set this to 0 to remove mutual inductance. The default value is $0.1 \mathrm{mH} / \mathrm{km}$.

Line-line capacitance

Line-line capacitance per unit length. The default value is $0.3 \mu \mathrm{~F} / \mathrm{km}$.

Line-ground capacitance

Line-ground capacitance per unit length. The default value is $0 \mu \mathrm{~F} / \mathrm{km}$ (no lineground capacitance).

Number of segments

Number of segments in the pi-line model. The default value is 1.

Parasitics tab

Parasitic series resistance

Resistance value, divided by the number of segments, that is added in series with every capacitor in the model. The default value is $1 \mathrm{e}-6 \Omega$.

Parasitic parallel conductance

Conductance value, divided by the number of segments, that is added in parallel with every series resistor and inductor in the model. The default value is $1 \mathrm{e}-6 \Omega^{-1}$.

Ports

The block has the following ports:

$$
\sim 1
$$

Expandable "three-phase port"
~2
Expandable "three-phase port"
g1
Electrical conserving port corresponding to ground connection at ~ 1 end of the transmission line
g2
Electrical conserving port corresponding to ground connection at ~ 2 end of the transmission line

Related Examples

- "Expand and Collapse Three-Phase Ports on a Block"

Two-Way Switch

Three-phase double-throw switch

Library

Switches \& Breakers

Description

The Two-Way Switch block models a three-phase double-throw switch that uses an external signal to connect each phase of the port ~ 1 with the corresponding phase of either port ~ 2 or ~ 3.

The table shows how the external signal vT controls the block behavior.

Condition	Block Behavior	Resistance Parameter Used
VT \leq Threshold	Each phase of port ~ 1 is connected to the corresponding phase of port ~ 2 via internal resistance. Port ~ 3 is unconnected.	Open conductance (port ~ 1 to port $\sim 3)$. Closed resistance (port ~ 1 to port ~ 2 2)
VT > Threshold	Each phase of port ~ 1 is connected to the corresponding phase of port ~ 3 via internal resistance. Port ~ 2 is unconnected.	Open conductance (port ~ 1 to port $\sim 2)$. Closed resistance (port ~ 1 to port $\sim 3)$

Dialog Box and Parameters

Closed resistance

Resistance between ports ~ 1 and ~ 3 when the switch is closed. The default value is 0.001Ω.

Open conductance

Conductance between ports ~ 1 and ~ 2 when the switch is open. The default value is 1e-6 Ω^{-1}.

Threshold

Threshold voltage for the control port VT. When the voltage is above the threshold, the switch is closed. The default value is 0 V .

Ports

The block has the following ports:
~ 1
Expandable "three-phase port"
~2
Expandable "three-phase port"
~3
Expandable "three-phase port"
vT
Scalar control port, which is either a physical signal or an electrical port.

See Also

Single-Phase Switch \| Single-Phase Two-Way Switch \| Switch

Related Examples

- "Expand and Collapse Three-Phase Ports on a Block"
- "Switch Between Physical Signal and Electrical Ports"

Twelve-Pulse Gate Multiplexer

Multiplex gate input signals to Three-Level Converter block

Library

Semiconductors

Description

The Twelve-Pulse Gate Multiplexer block routes gate voltage signals to the 12 switching devices in a Three-Level Converter block. The block multiplexes the 12 gate signals into a single vector. Gate signals are ordered as A-phase, Behaves, and then Chafes, with four gate signals per phase.

If you want to use SimElectronics to model the electronics that drive the Three-Level Converter block, you can switch the input ports of the Twelve-Pulse Gate Multiplexer block from physical signal ports to electrical ports.

When you switch the block inputs to electrical ports, the block shows twelve pairs of electrical connections, each pair corresponding to the gate and cathode of a switching device.

Dialog Box and Parameters

Twelve-Pulse Gate Multiplexer
This block multiplexes the connections required to control a three-
phase three-level converter into a single vector G . Use this block in
conjunction with the Three-Level Converter block in the
Semiconductors sub-library.
Right-click to select between physical-signal and electrical port
variants.

The block has no parameters.

Ports

The block has the following ports:
$\mathrm{Ga}(1), \mathrm{Ga}(2), \mathrm{Ga}(3), \mathrm{Ga}(4)$
Ports associated with the gate terminals of the Three-Level Converter A-phase switching devices. You can set the ports to either physical signal or electrical ports.

Gb(1), Gb(2), Gb(3), Gb(4)

Ports associated with the gate terminals of the Three-Level Converter Behaves switching devices. You can set the ports to either physical signal or electrical ports.

Gc(1), Gc(2), Gc(3), Gc (4)

Ports associated with the gate terminals of the Three-Level Converter Chafes switching devices. You can set the ports to either physical signal or electrical ports.

G
Vector output port associated with the multiplexed gate signals. Connect this port to the G port of the Three-Level Converter block.
$\mathrm{Ka}(1), \mathrm{Ka}(2), \mathrm{Ka}(3), \mathrm{Ka}(4)$
Electrical conserving ports associated with the individual cathode terminals corresponding to the Three-Level Converter block A-phase switching devices. These ports are visible only if you set the input ports of the Twelve-Pulse Gate Multiplexer block to electrical ports.

$\mathrm{Kb}(1), \mathrm{Kb}(2), \mathrm{Kb}(3), \mathrm{Kb}(4)$

Electrical conserving ports associated with the individual cathode terminals corresponding to the Three-Level Converter block Behaves switching devices. These ports are visible only if you set the input ports of the Twelve-Pulse Gate Multiplexer block to electrical ports.

$\mathrm{Kc}(1), \mathrm{Kc}(2), \mathrm{Kc}(3), \mathrm{Kc}(4)$

Electrical conserving ports associated with the individual cathode terminals corresponding to the Three-Level Converter block Chafes switching devices. These ports are visible only if you set the input ports of the Twelve-Pulse Gate Multiplexer block to electrical ports.

See Also

Six-Pulse Gate Multiplexer | Three-Level Converter

Related Examples

- "Switch Between Physical Signal and Electrical Ports"

Voltage Source

Three-phase voltage source

Library

Sources

Description

The Voltage Source block models an ideal three-phase voltage source or a threephase voltage source with harmonics. You specify the configuration using the Source representation parameter.

When you specify the ideal three-phase voltage source representation, the Voltage Source block models an ideal three-phase voltage source that maintains sinusoidal voltage of the specified magnitude across its terminals, independent of the current flowing through the source.

The output voltage is defined by the following equations:

$$
\begin{aligned}
& V_{0}=\frac{\sqrt{2}}{\sqrt{3}} \cdot v_{\text {line_rms }} \\
& v_{a}=V_{0} \cdot \sin (2 \pi \cdot f \cdot t+\varphi) \\
& v_{b}=V_{0} \cdot \sin \left(2 \pi \cdot f \cdot t+\varphi-120^{\circ}\right) \\
& v_{c}=V_{0} \cdot \sin \left(2 \pi \cdot f \cdot t+\varphi+120^{\circ}\right),
\end{aligned}
$$

where:

- V_{0} is the peak phase voltage.
- $v_{\text {line_rms }}$ is the RMS phase-to-phase voltage.
- $v_{\mathrm{a}}, v_{\mathrm{b}}, v_{\mathrm{c}}$ are the respective phase voltages.
- f is the frequency.
- φ is the phase shift.
- t is the time.

When you specify the three-phase voltage source with harmonics representation, the Voltage Source block models a three-phase voltage source that maintains the fundamental frequency and harmonics of the specified magnitude across its terminals, independent of the current flowing through the source.

The output voltage is defined by the following equations:

$$
\begin{aligned}
& V_{0}=\frac{\sqrt{2}}{\sqrt{3}} \cdot v_{\text {line } _r m s} \cdot H_{\text {ratios }} \\
& v_{a}=V_{0} \cdot \sin \left((2 \pi \cdot f \cdot t+\varphi) H_{\text {orders }}^{\prime}\right) \\
& v_{b}=V_{0} \cdot \sin \left((2 \pi \cdot f \cdot t+\varphi-\theta) H_{\text {orders }}^{\prime}\right) \\
& v_{c}=V_{0} \cdot \sin \left((2 \pi \cdot f \cdot t+\varphi+\theta) H_{\text {orders }}^{\prime}\right),
\end{aligned}
$$

where:

- V_{0} is a row-vector containing the peak voltage of the fundamental and harmonic sinusoids.
- $v_{\text {line_rms }}$ is the RMS phase-to-phase voltage.
- $H_{\text {ratios }}$ is a row-vector of harmonic ratios. The first element is 1 to represent the fundamental.
- $H_{\text {orders }}$ is a row-vector of harmonic orders. The first element is 1 to represent the fundamental.
- $v_{\mathrm{a}}, v_{\mathrm{b}}, v_{\mathrm{c}}$ are the respective phase voltages.
- f is a column-vector of harmonic frequencies. The first element is the fundamental frequency.
- φ is a column-vector of harmonic phase shifts. The first element is the fundamental phase shift.
- θ is a column-vector of harmonic phase offsets. The first element is 120°.
- t is the time.

The source has a wye configuration, and port n provides a connection to the center of the wye. Port ~ is an expandable "three-phase port" representing the three phases, a, b, and c. The current is positive if it flows from positive to the center of the wye, and the voltage across each phase is equal to the difference between the voltage at the positive terminal and the center of the wye, $V(+)-V \mathrm{n}$.

Dialog Box and Parameters

Whick Block Parameters: Voltage Source				x^{-}
Voltage Source				
The AC three-phase voltage source maintains ideal fundamental sinusoidal voltages or fundamental plus harmonic voltages across its output terminals, independent of the current flowing through the source. In the ideal case, the output voltage is defined by Va $=$ VLINE_RMS * $\left(\operatorname{sqrt}(2) /\right.$ sqrt(3))* $\sin \left(2^{*}\right.$ pi*FREQ*t + SHIFT $)$, where VLINE_RMS is the line (i.e. phase-to-phase) RMS voltage, FREQ is the frequency, and SHIFT is the phase shift. Right-click on the block and select Simscape block choices to access variant implementations of this block.				
Settings				
Main	Harmonics			
Voltage (phase-to-phase RMS):		sqrt(3) * $100 /$ sqrt(2)	V	\checkmark
Phase shift:		0	deg	\checkmark
Frequency:		60	Hz	\checkmark
		OK	Help	Apply

- "Main Tab" on page 1-309
- "Harmonics Tab" on page 1-310

Main Tab

Voltage (phase-to-phase RMS)

RMS phase-to-phase, or line, voltage. The default value is sqrt(3)*100/sqrt(2), or 122.4745 , V.

Phase shift

Phase shift in angular units. The default value is 0 deg .

Frequency

Voltage frequency, specified in Hz or units directly convertible to Hz (where Hz is defined as $1 / \mathrm{s}$). For example, kHz and MHz are valid units, but rad/s is not. The default value is 60 Hz .

Harmonics Tab

Source Representation

Choose between Ideal and Include harmonics. The default value is Ideal.

Harmonic orders

A row-vector of additional integer harmonic orders at which harmonics are to be generated. This parameter is only visible when you set the Source representation parameter to Include harmonics. The default value is [$\left.\begin{array}{cccc}5 & 7 & 11 & 13\end{array}\right]$.

Harmonic magnitude to peak magnitude ratios

A row-vector of ratios of harmonic magnitudes relative to the fundamental magnitude. This parameter is only visible when you set the Source representation parameter to Include harmonics. The default value is $\left[\begin{array}{llll}0.1 & 0.1 & 0.1 & 0.1\end{array}\right]$.

Ports

The block has the following ports:

```
Expandable "three-phase port"
n
```

Electrical conserving port associated with the center of the wye

See Also

Current Source

Related Examples

- "Expand and Collapse Three-Phase Ports on a Block"

Wye-Connected Load

Three-phase load wired in wye configuration

Library

Passive Devices

Description

The Wye-Connected Load block models a three-phase load wired in a wye configuration. Each limb of the load can include any combination of a resistor (R), capacitor (C), and inductor (L), connected in series or in parallel.

You can specify values for the R, L, and C components directly in terms of resistance, inductance, and capacitance, or by rated powers at a rated voltage and frequency.

- If you parameterize the block directly in terms or R, L, and C values, then for initialization you must provide a three-element row vector of initial voltages for a capacitor, and a three-element row vector of initial currents for an inductor.
- If you parameterize the block in terms of rated powers, then you must specify initial conditions in terms of an initial voltage, initial voltage phase, and initial frequency. For example, if the load is connected directly to a three-phase voltage source, then the initial conditions are identical to the source values for RMS line voltage, frequency, and phase shift. To specify zero initial-voltage magnitude, set the initial voltage to 0 .

For certain combinations of R, L, and C, you must specify parasitic resistance or conductance values, which can help numerical convergence when simulating some circuit topologies. These parasitic terms ensure that an inductor has a small parallel resistive path and that a capacitor has a small series resistance. When you parameterize the block in terms of rated powers, the rated power values do not account for these small parasitic terms. The rated powers represent only the R, L, and C values of the load itself.

Dialog Box and Parameters

- "Main Tab" on page 1-312
- "Parasitics Tab" on page 1-314
- "Initial Conditions Tab" on page 1-314

Main Tab

Parameterization

Select one of these values:

- Specify by rated power - Specify values for the R, L, and C components by rated powers at a rated voltage and frequency. This is the default.
- Specify component values directly - Specify values for the R, L, and C components directly in terms of resistance, inductance, and capacitance.

Switching the Parameterization value resets the Component structure value. Select the component parameterization option first, and then the component structure. If you later switch the Parameterization value, check the Component structure value and reselect it, if necessary.

Component structure

Select the desired combination of a resistor (R), capacitor (C), and inductor (L), connected in series or in parallel. The default is R , resistor.

Rated voltage

Voltage for which load powers are specified. This parameter is visible only when you specify values by rated power. The default value is 2.4 e 4 V .

Real power

Total real power dissipated by three-phase load when supplied at the rated voltage. This parameter is visible only when you specify values by rated power and select a component structure that includes a resistor. The value must be greater than 0 . The default value is 1000 W .

Rated electrical frequency

Frequency for which reactive load powers are specified. This parameter is visible only when you specify values by rated power. The default value is 60 Hz .

Inductive reactive power

Total inductive reactive power taken by the three-phase load when supplied at the rated voltage. This parameter is visible only when you specify values by rated power and select a component structure that includes an inductor. The value must be greater than 0 . The default value is $100 \mathrm{~V} * \mathrm{~A}$.

Capacitive reactive power

Total capacitive reactive power taken by the three-phase load when supplied at the rated voltage. This parameter is visible only when you specify values by rated power and select a component structure that includes a capacitor. The value must be less than 0 . The default value is $-100 \mathrm{~V} * \mathrm{~A}$.

Resistance

Resistance of each of the load limbs. This parameter is visible only when you specify component values directly and select a component structure that includes a resistor. The default value is 1Ω.

Inductance

Inductance of each of the load limbs. This parameter is visible only when you specify component values directly and select a component structure that includes an inductor. The default value is 0.001 H .

Capacitance

Capacitance in each of the load limbs. This parameter is visible only when you specify component values directly and select a component structure that includes a capacitor. The default value is $1 \mathrm{e}-6 \mathrm{~F}$.

Parasitics Tab

Parasitic series resistance

Represents small parasitic effects. The parameter value corresponds to the series resistance value added to all instances of capacitors in the load. The default value is 1e-6 Ω.

Parasitic parallel conductance

Represents small parasitic effects. The parameter value corresponds to the parallel conductance value added across all instances of inductors in the load. The default value is $1 \mathrm{e}-6 \Omega^{-1}$.

Initial Conditions Tab

Terminal voltage magnitude

Expected initial RMS line voltage at the load. This parameter is visible only when you specify values by rated power. The default value is 2.4 e 4 V .

Terminal voltage angle

Expected initial phase of the voltage at the load. This parameter is visible only when you specify values by rated power. The default value is 0 deg.

Frequency

Expected initial frequency at the load. This parameter is visible only when you specify values by rated power. The default value is 60 Hz .

Initial inductor current [Ia Ib Ic]

Initial current in the a, b, and c phase inductors, respectively. This parameter is visible only when you specify component values directly and select a component structure that includes an inductor. The default value is $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ A.

Initial capacitor voltage [Va Vb Vc]

Initial voltage across the a, b, and c phase capacitors, respectively. This parameter is visible only when you specify component values directly and select a component structure that includes a capacitor. The default value is $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right] \mathrm{V}$.

Block Parameterization

The following two tables list the block parameters for each Component structure, based on the selected Parameterization option:

- Specify by rated power
- Specify component values directly

Specify by Rated Power

Component Structure	Main Tab	Parasitics Tab	Initial Conditions Tab
R	Rated voltage Real power	None	None
L	Rated voltage Rated electrical frequency Inductive reactive power	Parasitic parallel conductance	Terminal voltage magnitude Terminal voltage angle Frequency
C	Rated voltage Rated electrical frequency Capacitive reactive power	Parasitic series resistance	Terminal voltage magnitude Terminal voltage angle Frequency
Series RL	Rated voltage Rated electrical frequency Real power Inductive reactive power	Parasitic parallel conductance	Terminal voltage magnitude Terminal voltage angle Frequency
Series RC	Rated voltage Rated electrical frequency Real power	None	Terminal voltage magnitude Terminal voltage angle Frequency

Component Structure	Main Tab	Parasitics Tab	Initial Conditions Tab
	Capacitive reactive power		
Series LC	Rated voltage Rated electrical frequency Inductive reactive power Capacitive reactive power	Parasitic parallel conductance	Terminal voltage magnitude Terminal voltage angle Frequency
Series RLC	Rated voltage Rated electrical frequency Real power Inductive reactive power Capacitive reactive power	Parasitic parallel conductance	Terminal voltage magnitude Terminal voltage angle Frequency
Parallel RL	Rated voltage Rated electrical frequency Real power Inductive reactive power	None	Terminal voltage magnitude Terminal voltage angle Frequency
Parallel RC	Rated voltage Rated electrical frequency Real power	Parasitic series resistance	Terminal voltage magnitude Terminal voltage angle

Component Structure	Main Tab	Parasitics Tab	Initial Conditions Tab
	Capacitive reactive power		Frequency
Parallel LC	Rated voltage Rated electrical frequency Inductive reactive power Capacitive reactive power	Parasitic series resistance	Terminal voltage magnitude Terminal voltage angle Frequency
Parallel RLC	Rated voltage Rated electrical frequency Real power Inductive reactive power Capacitive reactive power	Parasitic series resistance	Terminal voltage magnitude Terminal voltage angle Frequency

Specify Component Values Directly

Component Structure	Main Tab	Parasitics Tab	Initial Conditions Tab
R	Resistance	None	None
L	Inductance	Parasitic parallel conductance	Initial inductor current [Ia Ib Ic]
C	Capacitance	Parasitic series resistance	Initial capacitor voltage [Va Vb Vc]
Series RL	Resistance	Parasitic parallel conductance	Initial inductor current [Ia Ib Ic]
Series RC	Resistance	None	Initial capacitor voltage [Va Vb Vc]

Component Structure	Main Tab	Parasitics Tab	Initial Conditions Tab
	Capacitance		
Series LC	Inductance Capacitance	Parasitic parallel conductance	Initial inductor current [Ia Ib Ic] Initial capacitor voltage [Va Vb Vc]
Series RLC	Resistance Inductance Capacitance	Parasitic parallel conductance	Initial inductor current [Ia Ib Ic] Initial capacitor voltage [Va Vb Vc]
Parallel RL	Resistance Inductance	None	Initial inductor current [Ia Ib Ic]
Parallel RC	Resistance Capacitance	Parasitic series resistance	Initial capacitor voltage [Va Vb Vc]
Parallel LC	Inductance Capacitance	Parasitic series resistance	Initial inductor current [Ia Ib Ic] Initial capacitor voltage [Va Vb Vc]
Parallel RLC	Resistance Inductance Capacitance	Parasitic series resistance	Initial inductor current [Ia Ib Ic] Initial capacitor voltage [Va Vb Vc]

Ports

The block has the following ports:

Expandable "three-phase port"
n

Electrical conserving port associated with the neutral phase

See Also

Delta-Connected Load \| RLC

Related Examples

- "Expand and Collapse Three-Phase Ports on a Block"

Wye-Connected Variable Load

Three-phase variable load wired in wye configuration

Library

Passive Devices / Time Varying

Description

The Wye-Connected Variable Load block models a three-phase variable load wired in a wye configuration. Each limb of the load contains a resistor. The block calculates the resistance required to draw the real power of the physical signal input P at the rated voltage that you specify. Therefore, the block is capable of representing a real load.

To ensure that the resistance is always greater than zero, you specify the minimum real power that the load will consume. The minimum real power must be greater than zero.

Electrical Defining Equations

The resistance is defined by

$$
R=\frac{V_{\text {Rated }}^{2}}{P}
$$

where:

- R is the per-phase series resistance.
- $V_{\text {Rated }}$ is the RMS, rated line-line voltage.
- $\quad P$ is the three-phase real power required.

Dialog Box and Parameters

2l Block Parameters: Wye-Connected Variable Load Wye-Connected Variable Load Models a unity power factor load using a series resistor connected between each phase terminal and the common neutral terminal. The resistor values are calculated to draw the real power specified by physical signal input P , assuming Rated voltage. Settings Main 24e3 1e3 Rated voltage: Minimum real power: OK

Main Tab

Rated voltage

RMS, rated line-line voltage for the resistance equation. The default value is 24 kV .

Minimum real power

Minimum real power that the three-phase load dissipates when supplied at the rated voltage. The value must be greater than 0 . The default value is 1 kW .

Ports

The block has the following ports:
P
Physical signal input port for real power

Expandable "three-phase port"
n

Electrical conserving port associated with the neutral phase

See Also

Wye-Connected Load \| Wye-Connected Variable Load (lagging)

Related Examples

- "Expand and Collapse Three-Phase Ports on a Block"

Wye-Connected Variable Load (lagging)

Three-phase variable, lagging load wired in wye configuration

Library

Passive Devices / Time Varying

Description

The Wye-Connected Variable Load (lagging) block models a three-phase variable, lagging load wired in a wye configuration. Each limb of the load contains a resistor (R) and an inductor (L) connected in series. The block calculates the resistance and inductance required to draw the real and reactive powers of the physical signal inputs P and Q at the rated voltage and rated frequency that you specify. Therefore, the block is capable of representing a real and lagging reactive load.

To ensure that the resistance and inductance are always greater than zero, you specify the minimum real power and the reactive power that the load consumes. The minimum real power and the reactive power must be greater than zero.

Electrical Defining Equations

The per-phase series resistance and inductance are defined by

$$
R=\frac{P \cdot V_{\text {Rated }}^{2}}{P^{2}+Q^{2}}
$$

and

$$
L=\frac{Q V_{\text {Rated }}^{2}}{2 \pi F_{\text {Rated }}\left(P^{2}+Q^{2}\right)},
$$

where:

- R is the per-phase series resistance.
- L is the per-phase series inductance.
- $V_{\text {Rated }}$ is the RMS, rated line-line voltage.
- $F_{\text {Rated }}$ is the nominal AC electrical frequency.
- $\quad P$ is the three-phase real power required.
- Q is the three-phase lagging reactive power required.

The inductance is defined as the ratio of the magnetic flux, φ, to the steady-state current:

$$
L(i)=\frac{\phi(i)}{i} .
$$

Therefore the current-voltage relationship for the inductor is:

$$
v=\frac{d L}{d t} i+L \frac{d i}{d t}
$$

Dialog Box and Parameters

- "Main Tab" on page 1-325
- "Parasitics" on page 1-326
- "Variables Tab" on page 1-326

Main Tab

Rated voltage

RMS, rated line-line voltage for the resistance equation. The default value is 24 kV .

Rated electrical frequency

Nominal AC electrical frequency for the inductance equation. The default value is 60 Hz.

Minimum real power

Minimum real power that the three-phase load dissipates when supplied at the rated voltage. The value must be greater than 0 . The default value is 1 kW .

Minimum reactive power

Minimum reactive power that the three-phase load dissipates when supplied at the rated voltage. The value must be greater than 0 . The default value is 1 kW .

Parasitics

Parasitic parallel conductance

Conductance that the block adds, in parallel, to the series RL. The default value is 1 $\mu \Omega^{-1}$.

Variables Tab

Use the Variables tab to set the priority and initial target values for the block variables prior to simulation. For more information, see the Simscape topic, "Set Priority and Initial Target for Block Variables".

Ports

The block has the following ports:

P

Physical signal input port for real power
Q
Physical signal input port for reactive power
~
Expandable "three-phase port"
n
Electrical conserving port associated with the neutral phase.

See Also

Wye-Connected Load \| Wye-Connected Variable Load

Related Examples

- "Expand and Collapse Three-Phase Ports on a Block"

Wye-Deltal Transformer

Linear non-ideal wye-delta1 transformer with three-limb core

Library

Passive Devices / Transformers

Description

The Wye-Delta1 Transformer block models a linear non-ideal transformer with a threelimb core, in which the primary windings are configured in a wye connection and the secondary windings are configured in a delta connection. The delta voltages lag the wye voltages by 30 degrees, hence the name 1 o'clock delta. It includes linear winding leakage and linear core magnetization effects.

The figure shows the equivalent circuit diagram for the wye-delta1 transformer.

- $\mathrm{w} 1_{\mathrm{a}}$ is the primary winding connected between the a-phase and the primary neutral point.
- $\mathrm{w} 1_{\mathrm{b}}$ is the primary winding connected between the b-phase and the primary neutral point.
- $\mathrm{w} 1_{\mathrm{c}}$ is the primary winding connected between the c -phase and the primary neutral point.
- $\mathrm{w} 2_{\mathrm{a}}$ is the secondary winding connected between the a-phase and the b-phase.
- $\mathrm{w} 2_{\mathrm{b}}$ is the secondary winding connected between the b-phase and the c-phase.
- $\mathrm{w} 2_{\mathrm{c}}$ is the secondary winding connected between the c -phase and the a-phase.

Dialog Box and Parameters

- "Main Tab" on page 1-329
- "Impedances Tab" on page 1-330
- "Initial Conditions Tab" on page 1-330

Main Tab

Rated apparent power

Apparent power flowing through the transformer when operating at rated capacity. The default value is 100 e 6 VA .

Primary rated voltage

RMS line voltage applied to the primary winding under normal operating conditions. The default value is 4160 V .

Secondary rated voltage

RMS line voltage applied to the secondary winding under normal operating conditions. The default value is 24 e 3 V .

Rated electrical frequency

Rated or nominal frequency of the AC network to which the transformer is connected. The default value is 60 Hz .

Impedances Tab

Parameters in this tab are expressed in per unit (pu). For more information, see "PerUnit System of Units".

Primary leakage resistance (pu)

Power loss in the primary winding. The default value is 0.01 .

Primary leakage reactance (pu)

Magnetic flux loss in the primary winding. The default value is 0.001 .

Secondary leakage resistance (pu)

Power loss in the secondary winding. The default value is 0.01 .

Secondary leakage reactance (pu)

Magnetic flux loss in the secondary winding. The default value is 0.001 .

Shunt magnetizing resistance (pu)

Magnetic losses in transformer core. The default value is 500 .

Shunt magnetizing reactance (pu)

Magnetic effects of the transformer core when operating in its linear region. The default value is 500 .

Initial Conditions Tab

Initial primary currents

Current through the primary leakage inductors at time zero. The default value is [0 0 0] A.

Initial secondary currents

Current through the secondary leakage inductors at time zero. The default value is $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ A.

Initial magnetizing currents

Current through the shunt magnetization inductors at time zero. The default value is [0 0 0 $]$ A.

Initial fluxes

Magnetic fluxes in the limbs of the core at time zero. The default value is [llll $\left.\begin{array}{lll}0 & 0 & 0\end{array}\right]$ Wb .

Ports

The block has the following ports:
~1
Expandable "three-phase port" for primary winding
~2
Expandable "three-phase port" for secondary winding
n1
Electrical conserving port associated with the primary winding neutral point

Related Examples

- "Expand and Collapse Three-Phase Ports on a Block"

Wye-Deltall 1 Transformer

Linear non-ideal wye-delta11 transformer with three-limb core

Library

Passive Devices / Transformers

Description

The Wye-Delta11 Transformer block models a linear non-ideal transformer with a threelimb core, in which the primary windings are configured in a wye connection and the secondary windings are configured in a delta connection. The delta voltages lead the wye voltages by 30 degrees, hence the name 11 o'clock delta. It includes linear winding leakage and linear core magnetization effects.

The figure shows the equivalent circuit diagram for the wye-delta11 transformer.

- $\mathrm{w} 1_{\mathrm{a}}$ is the primary winding connected between the a-phase and the primary neutral point.
- $\mathrm{w} 1_{\mathrm{b}}$ is the primary winding connected between the b-phase and the primary neutral point.
- $\mathrm{w} 1_{\mathrm{c}}$ is the primary winding connected between the c-phase and the primary neutral point.
- $\mathrm{w} 22_{\mathrm{a}}$ is the secondary winding connected between the a-phase and the c-phase.
- $\mathrm{w} 2_{\mathrm{b}}$ is the secondary winding connected between the b-phase and the a-phase.
- $w 2_{c}$ is the secondary winding connected between the $c-p h a s e ~ a n d ~ t h e ~ b-p h a s e . ~$

Dialog Box and Parameters

- "Main Tab" on page 1-334
- "Impedances Tab" on page 1-335
- "Initial Conditions Tab" on page 1-335

Main Tab

Rated apparent power

Apparent power flowing through the transformer when operating at rated capacity. The default value is 100 e 6 VA.

Primary rated voltage

RMS line voltage applied to the primary winding under normal operating conditions. The default value is 4160 V .

Secondary rated voltage

RMS line voltage applied to the secondary winding under normal operating conditions. The default value is 24 e 3 V .

Rated electrical frequency

Rated or nominal frequency of the AC network to which the transformer is connected. The default value is 60 Hz .

Impedances Tab

Parameters in this tab are expressed in per unit (pu). For more information, see "PerUnit System of Units".

Primary leakage resistance (pu)

Power loss in the primary winding. The default value is 0.01 .

Primary leakage reactance (pu)

Magnetic flux loss in the primary winding. The default value is 0.001 .

Secondary leakage resistance (pu)

Power loss in the secondary winding. The default value is 0.01 .

Secondary leakage reactance (pu)

Magnetic flux loss in the secondary winding. The default value is 0.001 .

Shunt magnetizing resistance (pu)

Magnetic losses in transformer core. The default value is 500 .

Shunt magnetizing reactance (pu)

Magnetic effects of the transformer core when operating in its linear region. The default value is 500 .

Initial Conditions Tab

Initial primary currents

Current through the primary leakage inductors at time zero. The default value is [0 0 0] A.

Initial secondary currents

Current through the secondary leakage inductors at time zero. The default value is [0 0 0] A.

Initial magnetizing currents

Current through the shunt magnetization inductors at time zero. The default value is [0 0 0] A.

Initial fluxes

Magnetic fluxes in the limbs of the core at time zero. The default value is [llll 0000$]$ Wb .

Ports

The block has the following ports:
~1
Expandable "three-phase port" for primary winding
~2
Expandable "three-phase port" for secondary winding
n1
Electrical conserving port associated with the primary winding neutral point

Related Examples

- "Expand and Collapse Three-Phase Ports on a Block"

Wye-Deltal-Wye Transformer

Linear non-ideal wye-delta1-wye transformer with three-limb core

Library

Passive Devices / Transformers

Description

The Wye-Delta1-Wye Transformer block models a linear non-ideal transformer with a three-limb core, in which the primary windings are configured in a wye connection, and there are delta secondary windings and wye secondary windings. The delta voltages lag the wye voltages by 30 degrees, hence the name 1 o'clock delta. It includes linear winding leakage and linear core magnetization effects.

The figure shows the equivalent circuit diagram for the wye-delta1-wye transformer.

- $\mathrm{w} 1_{\mathrm{a}}$ is the primary winding connected between the a-phase and the primary neutral point.
- $\mathrm{w} 1_{\mathrm{b}}$ is the primary winding connected between the b-phase and the primary neutral point.
- $\mathrm{w} 1_{\mathrm{c}}$ is the primary winding connected between the c -phase and the primary neutral point.
- $\mathrm{w} 2_{\mathrm{a}}$ is the secondary winding connected between the a-phase and the b-phase.
- $w 2_{b}$ is the secondary winding connected between the b-phase and the c-phase.
- $\mathrm{w} 2_{\mathrm{c}}$ is the secondary winding connected between the c-phase and the a-phase.
- $\mathrm{w} 3_{\mathrm{a}}$ is the secondary winding connected between the a-phase and the secondary neutral point.
- $w 3_{b}$ is the secondary winding connected between the b-phase and the secondary neutral point.
- $\mathrm{w} 3_{\mathrm{c}}$ is the secondary winding connected between the c-phase and the secondary neutral point.

Dialog Box and Parameters

- "Main Tab" on page 1-339
- "Impedances Tab" on page 1-340
- "Initial Conditions Tab" on page 1-341

Main Tab

Rated apparent power

Apparent power flowing through the transformer when operating at rated capacity. The default value is 100 e 6 VA .

Primary rated voltage

RMS line voltage applied to the primary winding under normal operating conditions. The default value is 4160 V .

Delta secondary rated voltage

RMS line voltage applied to the delta secondary winding under normal operating conditions. The default value is 24 e 3 V .

Wye secondary rated voltage

RMS line voltage applied to the wye secondary winding under normal operating conditions. The default value is 24 e 3 V .

Rated electrical frequency

Rated or nominal frequency of the AC network to which the transformer is connected. The default value is 60 Hz .

Impedances Tab

Parameters in this tab are expressed in per unit (pu). For more information, see "PerUnit System of Units".

Primary leakage resistance (pu)

Power loss in the primary winding. The default value is 0.01 .

Primary leakage reactance (pu)

Magnetic flux loss in the primary winding. The default value is 0.001 .

Delta secondary leakage resistance (pu)

Power loss in the delta secondary winding. The default value is 0.01 .

Delta secondary leakage reactance (pu)

Magnetic flux loss in the delta secondary winding. The default value is 0.001 .

Wye secondary leakage resistance (pu)

Power loss in the wye secondary winding. The default value is 0.01 .

Wye secondary leakage reactance (pu)

Magnetic flux loss in the wye secondary winding. The default value is 0.001 .

Shunt magnetizing resistance (pu)

Magnetic losses in transformer core. The default value is 500 .

Shunt magnetizing reactance (pu)

Magnetic effects of the transformer core when operating in its linear region. The default value is 500 .

Initial Conditions Tab

Initial primary currents

Current through the primary leakage inductors at time zero. The default value is [0 0 O] A.

Initial delta secondary currents

Current through the delta secondary leakage inductors at time zero. The default value is [0 0 0] A.

Initial wye secondary currents

Current through the wye secondary leakage inductors at time zero. The default value is $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$.

Initial magnetizing currents

Current through the shunt magnetization inductors at time zero. The default value is [0 0 0) A.

Initial fluxes

Magnetic fluxes in the limbs of the core at time zero. The default value is [$\left.\begin{array}{lll}0 & 0 & 0\end{array}\right]$ Wb .

Ports

The block has the following ports:
~1
Expandable "three-phase port" for primary winding
~2
Expandable "three-phase port" for delta secondary winding ~3

Expandable "three-phase port" for wye secondary winding n1

Electrical conserving port associated with the primary winding neutral point
n3
Electrical conserving port associated with the wye secondary winding neutral point

Related Examples

- "Expand and Collapse Three-Phase Ports on a Block"

Wye-Deltal 1-Wye Transformer

Linear non-ideal wye-delta11-wye transformer with three-limb core

Library

Passive Devices / Transformers

Description

The Wye-Delta11-Wye Transformer block models a linear non-ideal transformer with a three-limb core, in which the primary windings are configured in a wye connection, and there are delta secondary windings and wye secondary windings. The delta voltages lead the wye voltages by 30 degrees, hence the name 11 o'clock delta. It includes linear winding leakage and linear core magnetization effects.

The figure shows the equivalent circuit diagram for the wye-delta11-wye transformer.

- $\mathrm{w} 1_{\mathrm{a}}$ is the primary winding connected between the a-phase and the primary neutral point.
- $\mathrm{w} 1_{\mathrm{b}}$ is the primary winding connected between the b-phase and the primary neutral point.
- $\mathrm{w} 1_{\mathrm{c}}$ is the primary winding connected between the c -phase and the primary neutral point.
- $\mathrm{w} 2_{\mathrm{a}}$ is the delta secondary winding connected between the a-phase and the c-phase.
- $w 2_{b}$ is the delta secondary winding connected between the b -phase and the a-phase.
- $\mathrm{w} 2_{\mathrm{c}}$ is the delta secondary winding connected between the c-phase and the b-phase.
- $\mathrm{w} 3_{\mathrm{a}}$ is the wye secondary winding connected between the a-phase and the secondary neutral point.
- $w 3_{b}$ is the wye secondary winding connected between the b-phase and the secondary neutral point.
- $w 3_{c}$ is the wye secondary winding connected between the c-phase and the secondary neutral point.

Dialog Box and Parameters

- "Main Tab" on page 1-345
- "Impedances Tab" on page 1-346
- "Initial Conditions Tab" on page 1-347

Main Tab

Rated apparent power

Apparent power flowing through the transformer when operating at rated capacity. The default value is 100 e 6 VA .

Primary rated voltage

RMS line voltage applied to the primary winding under normal operating conditions. The default value is 4160 V .

Delta secondary rated voltage

RMS line voltage applied to the delta secondary winding under normal operating conditions. The default value is 24 e 3 V .

Wye secondary rated voltage

RMS line voltage applied to the wye secondary winding under normal operating conditions. The default value is 24 e 3 V .

Rated electrical frequency

Rated or nominal frequency of the AC network to which the transformer is connected. The default value is 60 Hz .

Impedances Tab

Parameters in this tab are expressed in per unit (pu). For more information, see "PerUnit System of Units".

Primary leakage resistance (pu)

Power loss in the primary winding. The default value is 0.01 .

Primary leakage reactance (pu)

Magnetic flux loss in the primary winding. The default value is 0.001 .

Delta secondary leakage resistance (pu)

Power loss in the delta secondary winding. The default value is 0.01 .

Delta secondary leakage reactance (pu)

Magnetic flux loss in the delta secondary winding. The default value is 0.001 .

Wye secondary leakage resistance (pu)

Power loss in the wye secondary winding. The default value is 0.01 .

Wye secondary leakage reactance (pu)

Magnetic flux loss in the wye secondary winding. The default value is 0.001 .

Shunt magnetizing resistance (pu)

Magnetic losses in transformer core. The default value is 500 .

Shunt magnetizing reactance (pu)

Magnetic effects of the transformer core when operating in its linear region. The default value is 500 .

Initial Conditions Tab

Initial primary currents

Current through the primary leakage inductors at time zero. The default value is [0 0 O] A.

Initial delta secondary currents

Current through the delta secondary leakage inductors at time zero. The default value is [0 0 0] A.

Initial wye secondary currents

Current through the wye secondary leakage inductors at time zero. The default value is $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$.

Initial magnetizing currents

Current through the shunt magnetization inductors at time zero. The default value is [0 0 0 $]$ A.

Initial fluxes

Magnetic fluxes in the limbs of the core at time zero. The default value is [$\left.\begin{array}{lll}0 & 0 & 0\end{array}\right]$ Wb .

Ports

The block has the following ports:
~1
Expandable "three-phase port" for primary winding
~2
Expandable "three-phase port" for delta secondary winding ~3

Expandable "three-phase port" for wye secondary winding n1

Electrical conserving port associated with the primary winding neutral point
n3
Electrical conserving port associated with the wye secondary winding neutral point

Related Examples

- "Expand and Collapse Three-Phase Ports on a Block"

Wye-Wye Transformer

Linear non-ideal wye-wye transformer with three-limb core

Library

Passive Devices / Transformers

Description

The Wye-Wye Transformer block models a linear non-ideal transformer with a threelimb core, in which both the primary and the secondary windings are configured in a wye connection. It includes linear winding leakage and linear core magnetization effects.

The figure shows the equivalent circuit diagram for the wye-wye transformer.

- $\mathrm{w} 1_{\mathrm{a}}$ is the primary winding connected between the a-phase and the primary neutral point.
- $\mathrm{w} 1_{\mathrm{b}}$ is the primary winding connected between the b-phase and the primary neutral point.
- $\mathrm{w} 1_{\mathrm{c}}$ is the primary winding connected between the c -phase and the primary neutral point.
- $\quad \mathrm{w} 2_{\mathrm{a}}$ is the secondary winding connected between the a-phase and the secondary neutral point.
- $\mathrm{w} 2_{\mathrm{b}}$ is the secondary winding connected between the b-phase and the secondary neutral point.
- $\mathrm{w} 2_{\mathrm{c}}$ is the secondary winding connected between the c-phase and the secondary neutral point.

Dialog Box and Parameters

- "Main Tab" on page 1-351
- "Impedances Tab" on page 1-352
- "Initial Conditions Tab" on page 1-352

Main Tab

Rated apparent power

Apparent power flowing through the transformer when operating at rated capacity. The default value is 100 e 6 VA .

Primary rated voltage

RMS line voltage applied to the primary winding under normal operating conditions. The default value is 4160 V .

Secondary rated voltage

RMS line voltage applied to the secondary winding under normal operating conditions. The default value is 24 e 3 V .

Rated electrical frequency

Rated or nominal frequency of the AC network to which the transformer is connected. The default value is 60 Hz .

Impedances Tab

Parameters in this tab are expressed in per unit (pu). For more information, see "PerUnit System of Units"

Primary leakage resistance (pu)

Power loss in the primary winding. The default value is 0.01 .

Primary leakage reactance (pu)

Magnetic flux loss in the primary winding. The default value is 0.001 .

Secondary leakage resistance (pu)

Power loss in the secondary winding. The default value is 0.01 .

Secondary leakage reactance (pu)

Magnetic flux loss in the secondary winding. The default value is 0.001 .

Shunt magnetizing resistance (pu)

Magnetic losses in transformer core. The default value is 500 .

Shunt magnetizing reactance (pu)

Magnetic effects of the transformer core when operating in its linear region. The default value is 500 .

Initial Conditions Tab

Initial primary currents

Current through the primary leakage inductors at time zero. The default value is [0 0 0] A.

Initial secondary currents

Current through the secondary leakage inductors at time zero. The default value is $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ A.

Initial magnetizing currents

Current through the shunt magnetization inductors at time zero. The default value is [0 0 0 $]$ A.

Initial fluxes

Magnetic fluxes in the limbs of the core at time zero. The default value is $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ Wb .

Ports

The block has the following ports:
~1
Expandable "three-phase port" for primary winding ~2

Expandable "three-phase port" for secondary winding n1

Electrical conserving port associated with the primary winding neutral point n2

Electrical conserving port associated with the secondary winding neutral point

Related Examples

- "Expand and Collapse Three-Phase Ports on a Block"

Functions - Alphabetical List

pe_calculateThdPercent

Compute the total harmonic distortion (THD) percentage

Syntax

[thdPercent] = pe_calculateThdPercent(harmonicOrder, harmonicMagnitude)

Description

[thdPercent] = pe_calculateThdPercent (harmonicOrder, harmonicMagnitude) calculates the total harmonic distortion (THD) percentage using these equations:

$$
M=\frac{\text { harmonic magnitude }}{\sqrt{2}},
$$

and
$\% T H D=100 \frac{\sqrt{\sum_{i=2}^{n} M_{i}{ }^{2}}}{M_{1}}$,
where:

- M_{i} is the root mean square (RMS) value of the harmonic magnitude corresponding to the $i^{\text {th }}$ harmonic order.
- M is $V_{R M S}$ or $I_{R M S}$ as required.

You can use the pe_getHarmonics function to obtain the vectors of harmonic order and harmonic magnitude for a simscape.logging. Node.

Examples

Calculate THD percent

Calculate the THD from harmonic orders $[1 ; 5 ; 7 ; 11 ; 13]$ and harmonic magnitudes [1.1756e+03;0.0437e+03;0.0221e+03;0.0173e+03;0.0127e+03].

```
harmonicOrder = [1;5;7;11;13];
harmonicMagnitude = [1.1756e+03;0.0437e+03;0.0221e+03;0.0173e+03;0.0127e+03];
thdPercent = pe_calculateThdPercent( harmonicOrder, harmonicMagnitude )
```

thdPercent =
4.5480

- Harmonic Analysis of a Three-Phase Rectifier

Input Arguments

harmonicOrder - Harmonic orders

vector

Harmonic orders from 0 up to and including number of harmonics, specified as a vector.
Example: [1;5;7;11;13]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32|uint64

harmonicMagnitude - Harmonic magnitudes

vector
Harmonic magnitudes from the $0^{\text {th }}$ harmonic up to and including the number of harmonics included in the analysis, specified as a vector.

Example: [1.1756e+03;0.0437e+03;0.0221e+03;0.0173e+03;0.0127e+03]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32|uint64

```
See Also
pe_getHarmonics | pe_plotHarmonics
```


pe_getHarmonics

Return harmonic orders, magnitudes, and fundamental frequency

Syntax

```
[harmonicOrder,harmonicMagnitude,fundamentalFrequency] =...
pe_getHarmonics(loggingNode)
[harmonicOrder,harmonicMagnitude,fundamentalFrequency] =...
pe_getHarmonics(loggingNode,valueIdx)
[harmonicOrder,harmonicMagnitude,fundamentalFrequency] =...
pe_getHarmonics(loggingNode,valueIdx,tOfInterest)
[harmonicOrder,harmonicMagnitude,fundamentalFrequency] =...
pe_getHarmonics(loggingNode,valueIdx,tOfInterest,nPeriodOfInterest)
[harmonicOrder,harmonicMagnitude,fundamentalFrequency] =...
pe_getHarmonics(loggingNode,valueIdx,tOfInterest,
nPeriodOfInterest,...
offsetOfInterest)
[harmonicOrder,harmonicMagnitude,fundamentalFrequency] =...
pe_getHarmonics(loggingNode,valueIdx,tOfInterest,
nPeriodOfInterest,...
offsetOfInterest,nHarmonic)
```


Description

[harmonicOrder,harmonicMagnitude,fundamentalFrequency] =... pe_getHarmonics(loggingNode) calculates the harmonic orders, magnitudes, and fundamental frequency of a simscape.logging. Node of an AC or periodic variable.

The function finds the points in the $i^{\text {th }}$ signal (valueIdx) where the Simscape log crosses a threshold (offsetOfInterest). It uses the crossing points to find the required number of periods (nPeriodOfInterest) preceding the specified time (tOfInterest). Then it inputs the down-selected data to the Goertzel algorithm, which calculates the harmonic magnitudes up to and including the required number of harmonics (nHarmonic).

Note: This function uses threshold crossing points to determine the fundamental frequency of the data. If your input data is noisy or crosses the threshold more frequently than half of the fundamental period, filter it before you use this function to analyze it.

You enter the input arguments in a specific order. The Simscape logging node input argument is required. All other input arguments are optional and have default values. You enter [] to use the default value for an optional input argument if you are going to specify a value for a subsequent optional input argument.

You can use the pe_plotHarmonics function to obtain a bar chart from the same input arguments. You can use the outputs of this function as inputs to the pe_calculateThdPercent function to calculate the total harmonic distortion (THD) percentage.
[harmonicOrder,harmonicMagnitude,fundamentalFrequency] =... pe_getHarmonics(loggingNode, valueIdx) uses the index into value data.
[harmonicOrder,harmonicMagnitude,fundamentalFrequency] =... pe_getHarmonics(loggingNode, valueIdx, tOfInterest) uses the simulation time.
[harmonicOrder,harmonicMagnitude,fundamentalFrequency] =... pe_getHarmonics(loggingNode, valueIdx,tOfInterest, nPeriodOfInterest) uses the number of periods of fundamental frequency.
[harmonicOrder,harmonicMagnitude,fundamentalFrequency] =... pe_getHarmonics(loggingNode, valueIdx, tOfInterest, nPeriodOfInterest,...
offsetOfInterest) uses the DC offset.
[harmonicOrder,harmonicMagnitude,fundamentalFrequency] =... pe_getHarmonics(loggingNode, valueIdx, tOfInterest, nPeriodOfInterest,...
offsetOfInterest, nHarmonic) uses the number of harmonics.

Examples

Analyze using default values

This set of function arguments uses the Simscape logging node simlog.Load.V, which contains data from a three-phase voltage. The function will analyze the default signal, which is the first, or a-phase, signal at the final simulation time. The function will use the default values of 12 for the number of periods of the signal, 0 V for the signal bias, and 30 for the number of harmonics.

```
pe_getHarmonics(simlog.Load.V)
```


Analyze using specified values

This set of function arguments uses the Simscape logging node simlog.Load.V, which contains data from a three-phase voltage. The function will analyze the second, or bphase, signal at a simulation time of 2.3 s , The function will use 10 periods of the signal, which has a bias of 1 V . The function will analyze 15 harmonics.

```
pe_getHarmonics(simlog.Load.V,2,2.3,10,1,15)
```


Analyze using default and specified values

This set of function arguments uses the Simscape logging node simlog.Load.V, which contains data from a three-phase voltage. The function will analyze the first, or a-phase, signal at a simulation time of 2.3 s , The function will use 12 periods of the signal, which has a bias of 1 V . The function will analyze the default number, 30, of harmonics.

```
pe_getHarmonics(simlog.Load.V,[],2.3,[],1)
```


Input Arguments

loggingNode - Simscape logging node

1-by-1 simscape.logging.Node
Simscape logging node, specified as a 1-by-1 simscape.logging. Node. You create a simscape.logging. Node by running a simulation with Simscape logging enabled. See "Enable Data Logging for the Whole Model" to learn how to enable data logging.

Example: simlog.Load.V

The Simscape logging node simlog.Load.V contains data from a three-phase voltage.

valueIdx - Index into value data

1 (default) | scalar
Index into value data, specified as a scalar. Specifies the $i^{\text {th }}$ variable of interest in the Simscape log.

Example: 2

Specify the b-phase, which is the second signal from a three-phase voltage.

Example: []

Use [] to specify the default value of 1. The a-phase, which is the first signal from a threephase voltage, is the default signal of interest.

```
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32| uint64
```


tOfInterest - Simulation time

final time in Simscape log (default) | scalar
Simulation time of interest for harmonic analysis, specified as a scalar.

Example: 2.3

Specify a 2.3 s simulation time.

```
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32| uint64
```


nPeriodOfInterest - Number of periods

```
12 (default) | scalar
```

```
12 (default) | scalar
```

Number of periods of fundamental frequency to be included in harmonic analysis, specified as a scalar.

Example: 10

Specify 10 periods of the signal.

```
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64
```


offsetOfInterest - DC offset

0 (default) | scalar
DC offset in the input signal, specified as a scalar. The function uses this value to find the periods of interest.

Example: 1

Specify a bias of 1 V for the signal.

```
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32| uint64
```

nHarmonic - Number of harmonics
30 (default) | scalar
Number of harmonics to include in analysis, specified as a scalar.
Example: 15
Specify that the number of harmonics to be analyzed is 15 .

```
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64
```


Output Arguments

harmonicOrder - Harmonic order
 vector

Harmonic orders from 0 up to and including the number of harmonics used in the analysis, returned as a vector.

harmonicMagnitude - Harmonic magnitude

vector
Harmonic magnitudes from the $0^{\text {th }}$ harmonic up to and including the number of harmonics used in the analysis, returned as a vector.

fundamentalFrequency - Fundamental frequency
 scalar

Fundamental frequency over the range of the down-selected input data, returned as a scalar.

See Also

pe_calculateThdPercent | pe_plotHarmonics | simscape.logging.Node

Related Examples

- Harmonic Analysis of a Three-Phase Rectifier
- "Log and Plot Simulation Data"

pe_plotHarmonics

Plot percentage of fundamental magnitude versus harmonic order

Syntax

```
pe_plotHarmonics(loggingNode)
pe_plotHarmonics(loggingNode,valueIdx)
pe_plotHarmonics(loggingNode,valueIdx,tOfInterest)
pe_plotHarmonics(loggingNode,valueIdx,tOfInterest,nPeriodOfInterest)
pe_plotHarmonics(loggingNode,valueIdx,tOfInterest,
nPeriodOfInterest,...
offsetOfInterest)
pe_plotHarmonics(loggingNode,valueIdx,tOfInterest,
nPeriodOfInterest,...
offsetOfInterest,nHarmonic)
```


Description

pe_plotHarmonics(loggingNode) plots a bar chart of percentage of fundamental magnitude versus harmonic order of the simscape.logging. Node of an AC or periodic variable. The title of the bar chart includes the fundamental frequency, fundamental peak value, and total harmonic distortion (THD) percentage.

You enter the input arguments in a specific order. The Simscape logging node input argument is required. All other input arguments are optional and have default values. You enter [] to use the default value for an optional input argument if you are going to specify a value for a subsequent optional input argument.

The pe_plotHarmonics function uses the pe_getHarmonics function to:

- Find the points in the $i^{\text {th }}$ signal (valueIdx) where the Simscape log crosses a threshold (offsetOfInterest).
- Use the crossing points to find the required number of periods (nPeriodOfInterest) preceding the specified time (tOfInterest).
- Calculate the harmonic magnitudes, up to and including the required number of harmonics (nHarmonic).
- Input the down-selected data to the Goertzel algorithm, which calculates the harmonic magnitudes up to and including the required number of harmonics (nHarmonic).

Note: The pe_getHarmonics function uses threshold crossing points to determine the fundamental frequency of the data. If your input data is noisy or crosses the threshold more frequently than half of the fundamental period, filter it before you use the pe_plotHarmonics function to plot it.

The pe_plotHarmonics function then inputs the harmonic orders and harmonic magnitudes to the pe_calculateThdPercent function to calculate the THD.
pe_plotHarmonics(loggingNode, valueIdx) uses the index into value data.
pe_plotHarmonics(loggingNode, valueIdx, tOfInterest) uses the simulation time.
pe_plotHarmonics(loggingNode, valueIdx,tOfInterest, nPeriodOfInterest) uses the number of periods of fundamental frequency.
pe_plotHarmonics(loggingNode, valueIdx, tOfInterest, nPeriodOfInterest,...
offsetOfInterest) uses the DC offset.
pe_plotHarmonics(loggingNode, valueIdx,tOfInterest, nPeriodOfInterest,...
offsetOfInterest, nHarmonic) uses the number of harmonics.

Examples

Plot using default values

This set of function arguments uses the Simscape logging node simlog.Load.V, which contains data from a three-phase voltage. The function will analyze the default signal, which is the first, or a-phase, signal at the final simulation time. The function will use the default values of 12 for the number of periods of the signal, 0 V for the signal bias, and 30 for the number of harmonics.

```
pe_plotHarmonics(simlog.Load.V)
```


Plot using specified values

This set of function arguments uses the Simscape logging node simlog.Load.V, which contains data from a three-phase voltage. The function will analyze the second, or bphase, signal at a simulation time of 2.3 s , The function will use 10 periods of the signal, which has a bias of 1 V . The function will analyze 15 harmonics.

```
pe_plotHarmonics(simlog.Load.V,2,2.3,10,1,15)
```


Plot using default and specified values

This set of function arguments uses the Simscape logging node simlog.Load.V, which contains data from a three-phase voltage. The function will analyze the first, or a-phase, signal at a simulation time of 2.3 s , The function will the default number (12) of periods of the signal, which has a bias of 1 V . The function will analyze the default number (30) of harmonics.

```
pe_plotHarmonics(simlog.Load.v,[],2.3,[],1)
```


Input Arguments

loggingNode - Simscape logging node

1-by-1 simscape.logging.Node
Simscape logging node, specified as a 1-by-1 simscape. logging. Node. You create a simscape.logging. Node by running a simulation with Simscape logging enabled. See "Enable Data Logging for the Whole Model" to learn how to enable data logging.

Example: simlog.Load.V

The Simscape logging node simlog.Load.V contains data from a three-phase voltage.

```
valueIdx - Index into value data
1(default) | scalar
```

Index into value data, specified as a scalar. Specifies the $i^{\text {th }}$ variable of interest in the Simscape log.

Example: 2

Specify the b-phase, which is the second signal from a three-phase voltage.

Example: []

Use [] to specify the default value of 1 . The a-phase, which is the first signal from a threephase voltage, is the default signal of interest.

```
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64
```


tOfInterest - Simulation time

final time in Simscape log (default) | scalar
Simulation time of interest for harmonic analysis, specified as a scalar.

Example: 2.3

Specify a 2.3 s simulation time.

```
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64
```


nPeriodOfInterest - Number of periods

12 (default) | scalar

Number of periods of fundamental frequency to be included in harmonic analysis, specified as a scalar.

Example: 10

Specify 10 periods of the signal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

offset0fInterest - DC offset

0 (default) | scalar
DC offset in the input signal, specified as a scalar. The function uses this value to find the periods of interest.

Example: 1

Specify a bias of 1 V for the signal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32|uint64

nHarmonic - Number of harmonics

30 (default) | scalar
Number of harmonics to include in analysis, specified as a scalar.

Example: 15

Specify that the number of harmonics to be analyzed is 15 .
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32|uint64

See Also

pe_calculateThdPercent | pe_getHarmonics | simscape.logging.Node

Related Examples

- Harmonic Analysis of a Three-Phase Rectifier
- "Log and Plot Simulation Data"

Glossary

B	Susceptance.
C	Capacitance.

Glossary-1

nPolePairs	Number of pole pairs for three-phase machine.
phase voltage	RMS value of the voltage measured between a phase and reference point. The reference point is usually a neutral or ground point. In a balanced three-phase system with no harmonics, peak phase voltage is equal to peak line voltage divided by $\sqrt{3}$. The RMS value equals peak phase voltage divided by $\sqrt{2}$. Standard abbreviations are Va, Vb , and Vc.
$\mathrm{P}_{\text {PerPhase }}$	Real power per phase.
psi	Instantaneous peak magnetic flux linkage.
Psi	RMS magnetic flux linkage.
$Q_{\text {PerPhase }}$	Reactive power per phase.
R	Resistance.
$\mathbf{S}_{\text {Rated }}$	Rated apparent power.
$S_{\text {PerPhase }}$	Apparent power per phase.
torque	Torque of three-phase machine.
v	Instantaneous voltage.
V	RMS voltage.
$\mathrm{Va}, \mathrm{Vb}, \mathrm{Vc}$	Phase voltages.
Vab, Vac, Vbc,...	Line voltages.
$\mathrm{V}_{\text {Rated }}$	Rated voltage of three-phase machine.
\#Electrical	Electrical angular speed of three-phase machine.
\#Mechanical	Mechanical angular speed of three-phase machine.

voltage is also known as rated voltage, rated RMS, name plate voltage, line-line voltage, and phase-phase voltage.

Number of pole pairs for three-phase machine.
RMS value of the voltage measured between a phase and reference point. The reference point is usually a neutral or ground point. In a balanced three-phase system with no harmonics, peak phase voltage is equal to peak line voltage divided by $\sqrt{3}$. The RMS value equals peak phase voltage divided by $\sqrt{2}$. Standard abbreviations are Va, Vb , and Vc.

Real power per phase.
Instantaneous peak magnetic flux linkage.
RMS magnetic flux linkage.
Reactive power per phase.
Resistance.
Rated apparent power.
Apparent power per phase.
Torque of three-phase machine.
Instantaneous voltage.
RMS voltage.
Phase voltages.
Line voltages.
Rated voltage of three-phase machine.
Electrical angular speed of three-phase machine.
Mechanical angular speed of three-phase machine.

winding voltage	Voltage measured between both ends of a winding. For a wye connection, winding voltage equals phase voltage. For a delta connection, winding voltage equals line voltage.
wye connection	Three-phase winding configuration. Each of the three windings is connected between a phase and neutral point. Physically, the connection resembles the letter Y. A wye connection is also referred to as a star connection, or Y connection.
\mathbf{X}	Reactance.
\mathbf{Y}	Admittance.
\mathbf{z}	Impedance.

